Combination Immunotherapies

Thomas F. Gajewski
James P. Allison
Drew Pardoll
Jon Wigginton
Rationale and foundation for discussion

• Important disclaimer: we are not suggesting that “vaccines don’t work” and therefore combinations of vaccines plus other therapies may show synergy
• Rather, our view is that an anti-tumor immune response is a complex and multi-stage process that can become dysregulated at several levels in the context of a growing tumor
• Overcoming each of these defects may require a distinct intervention, and therefore combination therapies may be important in order to translate immune responses into tumor regression
• Another way to look at it: with cancer vaccines, the “drug” is not the vaccine itself—rather, the therapeutic entity is the properly generated tumor antigen-specific effector T cell population that has penetrated the tumor microenvironment and maintained effector function there
An effective anti-tumor immune response is a multistep process

1. Priming phase (vaccination)
 - Magnitude and breadth of T cell response
 - Qualitative aspects of T cell differentiation (effector functions)
 - Issue: limitations of available repertoire

2. Expansion and persistence
 - Survival of effector cells in periphery
 - Immunologic memory

3. Trafficking to tumor sites
 - Chemokines and homing receptors

4. Executing effector function
 - Overcoming negative regulatory pathways
 - Anergy, CTLA-4, PD-1, IDO, Tregs
 - Maintenance of effector function
 - Regeneration of cytotoxic granules

5. Tumor cell susceptibility to recognition and killing
 - Expression of antigens, processing machinery, MHC
 - Overcoming anti-apoptotic mechanisms
 - Interface with tumor cell-intrinsic biology
Complexities of anti-tumor immune responses: Taking into account the effector phase

Lymph node (Priming phase)
Vaccine

APC
nCD8
IL-2
eCD8

Blood

Tumor microenvironment (Effector phase)

Inhibitory mechanisms

APC
Chemokines
IFN-γ
eCD8

Granzymes perforin
I. Priming phase/vaccine: considerations for combinations

• Antigen choice(s)
 – Peptides, protein, DNA, RNA, bulk tumor cells
 – Type of antigen (e.g. necessary for malignant phenotype)
 – Class I MHC, class II MHC, non-classical (glycolipids)

• Adjuvant components
 – Emulsions in oil-based formulations
 – TLR agonists (LPS/MPL + CpG)
 – Cytokine additions—differentiation promoters
 – Microbial vectors
 – Dendritic cell-oriented

• Dose, schedule, route of administration
 – Issue of tissue-specific homing of T cells
Example 1: α-GalCer

Administration of protein and α-GalCer can synergistically expand CD8+ T cells

Example 2: IL-12
Superior induction of specific CTL responses in mice using peptide-loaded APCs + IL-12

Superior immune responses with IL-12 + peptides in Montanide in patients with melanoma

Potent T cell response against multiple antigens post-immunization of melanoma patients with peptide-pulsed PBMC + IL-12
II. T cell expansion and persistence: considerations for combinations

- Survival/homeostatic cytokines
 - IL-7
 - IL-15
 - IL-21
- Costimulatory receptors
 - B7 family members
 - 4-1BB
 - Other TNFR family members
Example 3: Anti-4-1BB

Co-administration of anti-4-1BB mAb with adoptively transferred T cells induces superior tumor rejection and T cell survival in mice

III. T cell trafficking: considerations for combinations

- Intratumoral chemokines
 - Mig, IP-10, MIP-1α
 - CCL21
 - (Blockade of TARC/MDC?)

- Intratumoral LIGHT
 - Promotes secondary generation of chemokines

- Homing receptors/adhesion molecules
 - Intratumoral ICAM-1 (component of TRICOM)
 - Immunizing via optimal route (tissue specific homing)

- Angiogenesis targeting
Only a subset of melanoma metastases appear to have the appropriate signature for T cell recruitment.

Example 4: LIGHT

Intratumoral LIGHT can induce T cell recruitment and tumor rejection in multiple tumor models

Fu et al, submitted
IV. Negative regulatory pathways: considerations for combinations

- Inhibitory receptors on T cells
 - CTLA-4
 - PD-1
 - KIRs
- Inhibitory cytokines
 - TGF-β
 - IL-10
- Inhibitory cell populations
 - CD4+CD25+FoxP3+ Tregs
 - Other Tregs
 - Myeloid suppressor cells
 - B cells
- Metabolic regulation
 - IDO
 - Arginase
 - Nutrient deprivation (glucose)
Example 5: CD25$^+$ Tregs
CD25 depletion can partially control B16 melanoma growth in vivo

Example 6: CTLA-4

Anti-CTLA-4 mAb + GM-CSF-transduced B16 vaccine induces tumor rejection and leads to vitiligo

van Elsas, Allison et al. JEM 1999
Clinical development of anti-CTLA-4 mAb: Example of MDX-010 (Ipilimumab)

- Fully human IgG1 monoclonal antibody to human CTLA-4 created by Medarex
- Blocks binding of CTLA-4 to CD80 and CD86
- Augments immune responses in primate models
- Co-developed by Medarex and Bristol-Myers Squibb in multiple cancer indications
 - Phase III study in metastatic melanoma ongoing
 - Phase II studies in renal cell carcinoma, prostate cancer, ovarian cancer, and others
GVAX Immunotherapy (CG1940/CG8711) + Ipilimumab (MDX-010: anti-CTLA-4) for HRPC

VUmc Cancer Center Amsterdam
GVAX + anti-CTLA-4 in prostate cancer: PSA curves – Dose Level 3 (3 mg/kg)

Gerritsen et al. ASCO 2006

a: 13Mar06: SAE - Hypophysitis (7 mo)
b: 03Feb06: Hypophysitis (5 mo)
c: 09Feb06: SAE – Hypophysitis (5 mo)
Multiple combinations:
Another layer of complexity and excitement through combined manipulation of regulatory checkpoints

• Anergy reversal + Treg-depletion
• Anti-4-1BB + anti-CTLA-4
• Anti-4-1BB + anti-PD-L1
• Anti-CTLA-4 + Treg depletion
Example 8: Treg depletion + anergy reversal
CD25-depleted T cells transferred into lymphopenic hosts
gives long-lived rejection of B16 melanoma and vitiligo

Kline, Gajewski et al. Submitted.
Example 9: Anti-4-1BB + anti-PD-L1 Combination induces rejection of PD-L1-expressing tumors in vivo

Hirano, Chen et al. Cancer Res. 2005
V. Tumor cell susceptibility: considerations for combinations

- **Expression of “signal 1”**
 - Antigens
 - Antigen processing machinery
 - MHC, β2M

- **Overcoming anti-apoptotic mechanisms**
 - Survivin
 - Bcl2-family members
 - Serine protease inhibitors

- **Interface with tumor cell-intrinsic oncogenes**
 - Ras/MAP kinase pathway & DC activation
 - Stat3 pathway and chemokines
 - Notch pathway and survival, immune gene expression
Example 10: PI-9/Spi6
Serine protease inhibitor PI-9 is frequently expressed in human cancers

Introduction of the murine equivalent Spi6 into tumor cells decreases susceptibility to T cell-mediated lysis in vitro.
Additional issues

- **Tumor heterogeneity**
 - Different cancer types may have distinct dominant immunologic barriers
 - Different patients with the same cancer may have distinct dominant immunologic barriers

- **Opportunities for drug discovery and development**
 - Cellular targets (e.g. Tregs, MSCs)
 - Molecular targets (FoxP3, LAG-3, GITR, IDO, arginase, PD-1, LIGHT)

- **How to prioritize combinations?**
 - Too many choices => Ideally, should be based on sound mechanistic analysis of immunologic barriers in populations of patients with given cancer types
 - Preclinical models should show synergy

- **Patient selection**
 - Can we identify patients who have measurable expandable CTL precursors before enrolling on vaccine trials?
 - Similarly, can we identify patients with tumor microenvironment that can support effector phase of anti-tumor immune response before enrolling on immunotherapy trials?

Represents only 7 genes:
- 4 upregulated
- 3 downregulated

6 mos SD or better
Additional issues

• Tumor heterogeneity
 – Different cancer types may have distinct dominant immunologic barriers
 – Different patients with the same cancer may have distinct dominant immunologic barriers

• Opportunities for drug discovery and development
 – Cellular targets (e.g. Tregs, MSCs)
 – Molecular targets (FoxP3, LAG-3, GITR, IDO, arginase, PD-1, LIGHT)

• How to prioritize combinations?
 – Too many choices => Ideally, should be based on sound mechanistic analysis of immunologic barriers in populations of patients with given cancer types
 – Preclinical models should show synergy

• Patient selection
 – Can we identify patients who have measurable expandable CTL precursors before enrolling on vaccine trials?
 – Similarly, can we identify patients with tumor microenvironment that can support effector phase of anti-tumor immune response before enrolling on immunotherapy trials?

• The hurdles seem great—why keep exploring this area?
 – Elegant specificity of immune response
 – Memory—what other cancer therapeutic persists like an immune response?
Acknowledgments

• James Allison, Memorial Sloan Kettering
• Drew Pardoll, Johns Hopkins University
• Jon Wigginton, NCI→Merck
GVAX/anti-CTLA4 trial Contributors

Dept Medical Oncology
Tanja de Gruijl
Sinéad Lougheed
Helen Gall
Bob Pinedo
Beppe Giaccone
Winald Gerritsen
Fons van den Eertwegh

Dept Pathology
Saskia Santegoets
Anita Stam
Petra Scholten
Erik Hooijberg
Mary von Blomberg
Rik Scheper

CELL GENESYS
Natalie Sacks
Kristen Hege
Shirley Clift
Karin Jooss
David Rhodes
Sayeh Morali

MEDAREX
Israel Lowy
Steven Fischkoff
Elizabeth Levy

Prostate Cancer Foundation
KWF Kanker Bestrijding
Affymetrix gene array analysis of pre-treatment biopsies from patients on melanoma vaccine sorted by clinical outcome

Represents only 7 genes:
- 4 upregulated
- 3 downregulated

6 mos SD or better

Has implications for patient selection on vaccine trials, and understanding biology
Differential chemokine expression in melanoma metastases with high versus low T cell transcripts
Co-expression of IDO, PD-L1, and FoxP3 transcripts in individual tumors
Summary of tumor microenvironment barriers: Need to promote T cell trafficking and overcome local immunosuppression.
Resolution of cutaneous metastases following immunization with melanoma peptide-pulsed PBMC + rhIL-12

After 3 vaccines

After 9 vaccines

Peterson, Gajewski et al. JCO 2003.
Greater increase in Melan-A-specific CD8\(^+\) T cells in clinical responders

\[\Delta \text{IFN-\gamma producing cells/100,000 CD8}^+ \text{cells} \]

- Responders: 120
- Non-responders: 20

\[p = 0.046 \]

2 CR, 1 MR, 4 mixed responses