



## Combination Immunotherapies

Thomas F. Gajewski James P. Allison Drew Pardoll Jon Wiggington

## **Rationale and foundation for discussion**

- Important disclaimer: we are not suggesting that "vaccines don't work" and therefore combinations of vaccines plus other therapies may show synergy
- Rather, our view is that an anti-tumor immune response is a complex and multi-stage process that can become dysregulated at several levels in the context of a growing tumor
- Overcoming each of these defects may require a distinct intervention, and therefore combination therapies may be important in order to translate immune responses into tumor regression
- Another way to look at it: with cancer vaccines, the "drug" is not the vaccine itself—rather, the therapeutic entity is the properly generated tumor antigen-specific effector T cell population that has penetrated the tumor microenvironment and maintained effector function there

## An effective anti-tumor immune response is a multistep process

- 1. Priming phase (vaccination)
  - Magnitude and breadth of T cell response
  - Qualitative aspects of T cell differentiation (effector functions)
  - Issue: limitations of available repertoire
- 2. Expansion and persistence
  - Survival of effector cells in periphery
  - Immunologic memory
- 3. Trafficking to tumor sites
  - Chemokines and homing receptors
- 4. Executing effector function
  - Overcoming negative regulatory pathways
    - Anergy, CTLA-4, PD-1, IDO, Tregs
  - Maintenance of effector function
    - Regeneration of cytotoxic granules
- 5. Tumor cell susceptibility to recognition and killing
  - Expression of antigens, processing machinery, MHC
  - Overcoming anti-apoptotic mechanisms
  - Interface with tumor cell-intrinsic biology

#### Complexities of anti-tumor immune responses: Taking into account the effector phase



Lymph node (Priming phase)

Tumor microenvironment (Effector phase)

## I. Priming phase/vaccine: considerations for combinations

- Antigen choice(s)
  - Peptides, protein, DNA, RNA, bulk tumor cells
  - Type of antigen (e.g. necessary for malignant phenotype)
  - Class I MHC, class II MHC, non-classical (glycolipids)
- Adjuvant components
  - Emulsions in oil-based formulations
  - TLR agonists (LPS/MPL + CpG)
  - Cytokine additions-differentiation promoters
  - Microbial vectors
  - Dendritic cell-oriented
- Dose, schedule, route of administration
  - Issue of tissue-specific homing of T cells

#### **Example 1: α-GalCer** Administration of protein and α-GalCer can synergistically expand CD8<sup>+</sup> T cells



Silk, Cerundolo et al. J. Clin. Invest. 2004



## Example 2: IL-12

Superior induction of specific CTL responses in mice using peptide-loaded APCs + IL-12



Fallarino, Gajewski et al. Int. J. Cancer 1999.

#### Superior immune responses with IL-12 + peptides in Montanide in patients with melanoma



Lee, Weber et al. JCO 2001.

## Potent T cell response against multiple antigens post-immunization of melanoma patients with peptide-pulsed PBMC + IL-12



## II. T cell expansion and persistence: considerations for combinations

- Survival/homeostatic cytokines
  - IL-7
  - IL-15
  - IL-21
- Costimulatory receptors
  - B7 family members
  - 4-1BB
  - Other TNFR family members

#### **Example 3: Anti-4-1BB** Co-administration of anti-4-1BB mAb with adoptively transferred T cells induces superior tumor rejection and T cell survival in mice



May, Liu et al. Cancer Res. 2002.

## III. T cell trafficking: considerations for combinations

- Intratumoral chemokines
  - Mig, IP-10, MIP-1 $\alpha$
  - CCL21
  - (Blockade of TARC/MDC?)
- Intratumoral LIGHT
  - Promotes secondary generation of chemokines
- Homing receptors/adhesion molecules
  - Intratumoral ICAM-1 (component of TRICOM)
  - Immunizing via optimal route (tissue specific homing)
- Angiogenesis targeting

### Only a subset of melanoma metastases appear to have the appropriate signature for T cell recruitment



Harlin, Gajewski et al. Manuscript in preparation.

#### **Example 4: LIGHT** Intratumoral LIGHT can induce T cell recruitment and tumor rejection in multiple tumor models



Fu et al, submitted

# IV. Negative regulatory pathways: considerations for combinations

- Inhibitory receptors on T cells
  - CTLA-4
  - PD-1
  - KIRs
- Inhibitory cytokines
  - TGF- $\beta$
  - IL-10
- Inhibitory cell populations
  - CD4+CD25+FoxP3+ Tregs
  - Other Tregs
  - Myeloid suppressor cells
  - B cells
- Metabolic regulation
  - IDO
  - Arginase
  - Nutrient deprivation (glucose)

#### Example 5: CD25<sup>+</sup> Tregs CD25 depletion can partially control B16 melanoma growth in vivo



Jones, Gallimore et al. Cancer Immunity 2002.

#### Example 6: CTLA-4 Anti-CTLA-4 mAb + GM-CSF-transduced B16 vaccine induces tumor rejection and leads to vitiligo



van Elsas, Allison et al. JEM 1999

## Clinical development of anti-CTLA-4 mAb: Example of MDX-010 (Ipilumumab)

- Fully human IgG1 monoclonal antibody to human CTLA-4 created by Medarex
- Blocks binding of CTLA-4 to CD80 and CD86
- Augments immune responses in primate models
- Co-developed by Medarex and Bristol-Myers Squibb in multiple cancer indications
  - Phase III study in metastatic melanoma ongoing
  - Phase II studies in renal cell carcinoma, prostate cancer, ovarian cancer, and others

## GVAX Immunotherapy (CG1940/CG8711) + Ipilimumab (MDX-010: anti-CTLA-4) for HRPC



VUmc Cancer Center Amsterdam

## GVAX + anti-CTLA-4 in prostate cancer: PSA curves – Dose Level 3 (3 mg/kg)



## **Multiple combinations:**

Another layer of complexity and excitement through combined manipulation of regulatory checkpoints

- Anergy reversal + Treg-depletion
- Anti-4-1BB + anti-CTLA-4
- Anti-4-1BB + anti-PD-L1
- Anti-CTLA-4 + Treg depletion

#### Example 8: Treg depletion + anergy reversal CD25-depleted T cells transferred into lymphopenic hosts gives long-lived rejection of B16 melanoma and vitiligo





Brown, Gajewski et al. J. Immunol. In Press. Kline, Gajewski et al. Submitted.

#### Example 9: Anti-4-1BB + anti-PD-L1 Combination induces induces rejection of PD-L1expressing tumors in vivo



## V. Tumor cell susceptibility : considerations for combinations

- Expression of "signal 1"
  - Antigens
  - Antigen processing machinery
  - MHC, β2M
- Overcoming anti-apoptotic mechanisms
  - Survivin
  - Bcl2-family members
  - Serine protease inhibitors
- Interface with tumor cell-intrinsic oncogenes
  - Ras/MAP kinase pathway & DC activation
  - Stat3 pathway and chemokines
  - Notch pathway and survival, immune gene expression

#### Example 10: PI-9/Spi6 Serine protease inhibitor PI-9 is frequently expressed in human cancers



Medema, J. P. et al. Proc. Natl. Acad. Sci. USA 2001



### Introduction of the murine equivalent Spi6 into tumor cells decreases susceptibility to T cellmediated lysis in vitro





## **Additional issues**



## **Additional issues**

- Tumor heterogeneity
  - Different cancer types may have distinct dominant immunologic barriers
  - Different patients with the same cancer may have distinct dominant immunologic barriers
- Opportunities for drug discovery and development
  - Cellular targets (e.g. Tregs, MSCs)
  - Molecular targets (FoxP3, LAG-3, GITR, IDO, arginase, PD-1, LIGHT)
- How to prioritize combinations?
  - Too many choices => Ideally, should be based on sound mechanistic analysis of immunologic barriers in populations of patients with given cancer types
  - Preclinical models should show synergy
- Patient selection
  - Can we identify patients who have measurable expandable CTL precursors before enrolling on vaccine trials?
  - Similarly, can we identify patients with tumor microenvironment that can support effector phase of anti-tumor immune response before enrolling on immunotherapy trials?
- The hurdles seem great—why keep exploring this area?
  - Elegant specificity of immune response
  - Memory—what other cancer therapeutic persists like an immune response?

## **Acknowledgments**

- James Allison, Memorial Sloan Kettering
- Drew Pardoll, Johns Hopkins University
- Jon Wiggington, NCI→Merck

## **GVAX/anti-CTLA4 trial Contributors**

<u>Dept Pathology</u>

Petra Scholten

Erik Hooijberg

Anita Stam



medisch centrum

**Dept Medical Oncology** 

Tanja de Gruijl

Sinéad Lougheed

Helen Gall

**Bob** Pinedo

Beppe Giaccone

Winald Gerritsen

Fons van den Eertwegh





Rik Scheper

**CELL GENESYS** Saskia Santegoets Natalie Sacks Kristen Hege Shirley Clift Karin Jooss Mary von Blomberg **David Rhodes** Sayeh Morali MEDAREX

> Israel Lowy Steven Fischkoff Elizabeth Levy

Affymetrix gene array analysis of pre-treatment biopsies from patients on melanoma vaccine sorted by clinical outcome



Has implications for patient selection on vaccine trials, and understanding biology

### Differential chemokine expression in melanoma metastases with high versus low T cell transcripts



## **Co-expression of IDO, PD-L1, and FoxP3 transcripts in individual tumors**



Summary of tumor microenvironment barriers: Need to promote T cell trafficking and overcome local immunosuppression



### Resolution of cutaneous metastases following immunization with melanoma peptide-pulsed PBMC + rhIL-12

#### After 3 vaccines



#### After 9 vaccines



#### Peterson, Gajewski et al. JCO 2003.



Wilcox, R. A. et al. J. Clin. Invest. 2002;109:651-659



## Greater increase in Melan-A-specific CD8<sup>+</sup> T cells in clinical responders





