Presenter Disclosure Information

David D. Roberts

The following relationships exist related to this presentation:

No Relationships to Disclose
CD47 limits cooperation between adaptive tumor immunity and radiation therapy

David Roberts, Ph.D.
Laboratory of Pathology, CCR

Current
David Soto-Pantoja
Sukhbir Kaur

Alumni
Justin Maxhimer
Jeff Isenberg

Collaborators
Laboratory of Pathology, NCI
Arunima Ghosh
Radiation Biology Branch, NCI
David Wink
Lisa Ridnour
William DeGraff
Vaccine Branch, NCI
Masaki Terabe
Jay A. Berzofsky
High CD47 expression in human cancers correlates with poor prognosis

Zhao PNAS 2011; Majeti Cell 2009; Willingham PNAS 2012; Baccelli Oncotarget 2014
Role of CD47 in cancer: signaling versus immune modulation?

CD47

Thrombospondin-1

Macrophages

SIRPα

“Don’t eat me”

VEGF/NO/cGMP signaling

Angiogenesis/ tumor perfusion/immunity

Self-renewal/stem cell reprogramming

Stress resistance (Apoptosis vs. autophagy)
CD47 limits cell and tissue radioresistance

- Mice lacking CD47 or its ligand thrombospondin-1 are radioresistant.
- Therapeutic blockade of CD47 using an antisense morpholino protects mice from local and total body irradiation.
- CD47 blockade protects bone marrow hematopoietic function.
- Circulating lymphocytes are preserved.
- Radioprotection is cell-autonomous and mediated by a protective autophagy response.

Suppression of CD47 enhances the radiation-induced delay in B16 melanoma growth in C57Bl/6 mice
Synergism between CD47 blockade and radiation therapy requires T cells

Enhancement by CD47 blockade of radiation growth delay for 15-12RM fibrosarcoma in BALB/c mice requires CD8$^+$ T cells
Synergism between CD47 blockade, adoptive CD8 T cell immunotherapy, and irradiation

15-12 RM Fibrosarcoma Tumor Growth in athymic nu/nu BALB/c mice

Soto-Pantoja, *Cancer Res* 2014
CD47 blockade increases CD8 CTL activity in vitro

301: murine CD47 blocking antibody

Soto-Pantoja, Cancer Res 2014
Eliminating CD47 in the tumor microenvironment is sufficient to enhance tumor radiation response.

B16 melanoma in WT versus CD47-null C57Bl/6 mice

![Graph showing tumor volume over time for WT and CD47-null mice with and without irradiation.](image)

Weight (g)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Weight (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>4.0 ± 0.5</td>
</tr>
<tr>
<td>WT + IR</td>
<td>5.5 ± 1.0</td>
</tr>
<tr>
<td>CD47-/-</td>
<td>6.0 ± 0.7</td>
</tr>
<tr>
<td>CD47-/- + IR</td>
<td>3.5 ± 0.6</td>
</tr>
</tbody>
</table>

CD8+ Cells (% per field)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>CD8+ Cells (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>20 ± 2</td>
</tr>
<tr>
<td>CD47-/-</td>
<td>15 ± 1</td>
</tr>
<tr>
<td>IR</td>
<td>10 ± 0.5</td>
</tr>
<tr>
<td>CD47-/- + IR</td>
<td>35 ± 3</td>
</tr>
</tbody>
</table>

Soto-Pantoja, Cancer Res 2014
CD47 signaling limits T cell activation

CD47 blockade synergizes with radiation to increase granzyme B expression

15-12RM Fibrosarcoma adoptive transfer model
15-12RM Fibrosarcoma in immune-competent mice
B16 melanoma model

Soto-Pantoja, Cancer Res 2014
CD8⁺ T cell infiltration inversely correlates with CD47 expression in human melanomas

Soto-Pantoja, Cancer Res 2014
Differential effects of CD47 signaling blockade on tumor vs. stromal cells

Healthy tissues and tumor stroma:

CD47 blockade increases stromal cell survival via:

- Nitric oxide and VEGF signaling
- Enhanced autophagy
- Inducing c-Myc and other stem cell factors

Tumor cells:

CD47 blockade increases tumor cell death via:

- Decreasing protective autophagy
- Resistance to c-Myc regulation
- Decreased resistance to innate immunity
- Enhanced CTL killing of tumor cells
Lessons and Take Home Messages

• Key points
 - Suppression of CD47 in the tumor microenvironment enhances radiation growth delay in syngeneic fibrosarcoma and melanoma models.
 - Synergism between CD47 blockade and radiation to delay tumor growth requires CD8^+ T cells.
 - Blockade of CD47 on either target or effector cells enhances antigen-dependent CD8^+ CTL-mediated killing of tumor cells in vitro and the efficacy of adoptive CD8^+ T cell transfer in vivo.
 - Enhanced T cell mediated killing following CD47 blockade is associated with increased granzyme B expression.

• Potential impact on the field
 - Therapeutics targeting CD47 could improve the efficacy of radiation therapy alone and in combination with adoptive T cell immunotherapy

• Lessons learned
 - CD47 is an immune checkpoint inhibitor for T cells