Presenter Disclosure Information

Mary L. Disis

The following relationships exist which may relate to this presentation:

VentiRx, Roche, Bristol Meyers Squibb, Immunovaccine, EMD-Serono Epigenomics
Immune response signatures and clinical outcome

I. Approach and models

II. Serologic signatures

III. Peripheral blood cell signatures
Clinically effective anti-tumor immunity

Population based, multiple tumor types

- Gene signature of a Type I cellular immune response (e.g. IFN-gamma, GZMB, CD3z)
- High density of infiltrating T cells (e.g. CD8, memory)
- Low density of regulatory cells (e.g. Treg, Th2, MDSC)

Bindea et al, Curr Opin Immunol, 2010
Clinically effective anti-tumor immunity

Population based, multiple tumor types

- Gene signature of a Type I cellular immune response (e.g. IFN-gamma, GZMB, CD3z)
- High density of infiltrating T cells (e.g. CD8, memory)
- Low density of regulatory cells (e.g. Treg, Th2, MDSC)

Environment supportive of clinically effective immunity

- Could the “immune score” be manipulated by immune–based therapy?
- Is there a potential for a blood-based “immune score”?

Bindea et al, Curr Opin Immunol, 2010
Breast cancer as a model: TIL predict response to chemotherapy

3-7% pCR

40-42% pCR

Denkert et al, JCO, 2010

n=1,058 neoadjuvant Anthracycline/taxane

n=134 tumors
Breast cancer as a model:
Tx induced Th1 predicts response

Ladoire et al, BJC, 2011

Samples from 1981-2000
Anthacyclines

T-bet+ CD4

Samples from 2001-2007
Trastuzumab–taxane

Prior to chemo Tbet+, p=0.99

n=44 HER2+ patients

50% T-bet+

n=58 HER2+ patients

16% T-bet+

Log-rank P=0.54

Independent predictor of improved RFS, p=0.04

Log-rank P=0.011
HR 4.76 (1.07-20)
Breast cancer as a model: Th diversity in tumor associated immunity

Cecil et al, 2012

IGFBP-2 and control antigens

Corrected spots/well (2x10^5)

IFN-g predominant

IL-10 predominant

Mixed Response

n=40

IGFBP-2

None

3%

IL-10

22%

Mix

53%

IFNg

22%

IGF-IR

IL-10

7%

Mix

53%

IFNg

40%
Data mining approaches to develop lead candidates

Trial Designs

- Phase I-II, HER2 Class II peptides
- Stage III and/or IV HER2* breast cancer
- Vaccine alone or concurrently with trastuzumab
- CR or SD (>2nd line tx)
- 6 vaccines, id, I month apart
- GM-CSF as an adjuvant

Phase I, n=66

HR=0.598 (CI 95%, 0.41-0.85), p=0.004

- Vaccinated (n=52)
- SEER Age/stage matched controls (n=178)

Median F/U >10yr

Phase I/II, n=22

- Median OS: 78m (6.5 yrs) *(8-23 mo)*
- Median PFS= 19m, 12% DFS *(7-12 mo)**

- Interim analysis: estimated 63% PFS at 4 yrs
- Expected: 44% at 4 yrs.

Median F/U >7yr

Phase II, n=38

Interim analysis: estimated 63% PFS at 4 yrs

Expected: 44% at 4 yrs.

Median F/U >7yr

Disis et al, JCO, 2009

Schaller et al, ASCO, 2005

**Yamamoto et al, Can Chemo Pharm, 2008*

Salazar et al, 2012
Data mining approaches to develop lead candidates

Trial Designs
- Phase I-II, HER2 Class II peptides
- Stage III and/or IV HER2+ breast cancer
- Vaccine alone or concurrently with trastuzumab
- CR or SD (50% 2nd, 3rd line tx)
- SEER Age/stage matched controls (n=178)
- 6 vaccines, id, I month apart
- GM-CSF as an adjuvant

Phase I, n=66
- HR=0.598 (CI 95%, 0.41-0.85), p=0.004
- SEER Age/stage matched controls (n=178)
- Vaccinated (n=52)

Phase I/II, n=22
- Median OS: 78m (6.5 yrs) (8-23 mo*)
- Median PFS= 19m, 12% DFS (7-12 mo**)

Phase II, n=38
- Interim analysis: estimated 63% PFS at 4 yrs
- Expected: 44% at 4 yrs.

Disis et al, JCO, 2002
Salazar et al, ASCO, 2009

Disis et al, JCO, 2009
*Schaller et al, ASCO, 2005
**Yamamoto et al, Can Chemo Pharm, 2008

Salazar et al, 2012
Development of epitope spreading associated with survival

Disis et al, JCO 2002

MVA: Stage, +/- chemo, CR, PR, SD
ES

HR=0.34 (CI 95%, 0.12-1.0), p=0.04

ES+, Median 84 mo
ES-, Median 24 mo

(n=52, Stage III/IV Breast Ca)
Environment supportive of clinically effective immunity

Cancer: Enhanced cross priming
Normal tissues: Autoimmunity

Epitope spreading: treatment induced change in the “immune score”?
Immune response signatures and clinical outcome

I. Approach and models

II. Serologic signatures

III. Peripheral blood cell signatures
Pilot study: Serologic signature of epitope spreading

- Stage IV
- Developed epitope spreading
- Alive greater than 10 years after vaccination
- Pre-vaccine and post-vaccine sera available
- n=8

HER2+ Breast Ca Library

Primary screen
- Pre-vaccine
- ES- sera

Secondary screen
- Pre-vaccine
- ES- sera

- 140K to 252K clones screened/patient
- 20-35 primary clones identified/patient
- 1-4 secondary clones confirmed for specificity
- Sequence the clones specific for ES developing after vaccination
Data mining approaches to develop lead candidates

Trial Designs

<table>
<thead>
<tr>
<th>Phase I-II, HER2 Class II peptides</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage III and/or IV HER2* breast cancer</td>
</tr>
<tr>
<td>Vaccine alone or concurrently with trastuzumab</td>
</tr>
<tr>
<td>CR or SD (50% 2nd, 3rd line tx)</td>
</tr>
<tr>
<td>6 vaccines, id, I month apart</td>
</tr>
<tr>
<td>GM-CSF as an adjuvant</td>
</tr>
</tbody>
</table>

Phase I, n=66

HR=0.598 (CI 95%, 0.41-0.85), p=0.004

Vaccinated (n=52)

SEER Age/stage matched controls (n=178)

Disis et al, JCO, 2002
Salazar et al, ASCO, 2009

Phase I/II, n=22

Median OS: 78m (6.5 yrs) (8-23 mo*)
Median PFS= 19m, 12% DFS (7-12 mo**)

Disis et al, JCO, 2009
*Schaller et al, ASCO, 2005
**Yamamoto et al, Can Chemo Pharm, 2008

Phase II, n=38

Interim analysis: estimated 63% PFS at 4 yrs
Expected: 44% at 4 yrs.

Salazar et al, 2012

Unique or shared responses?
Magnitude elicited post vaccine is associated with survival

Disis et al, JCO, 2009
n=22 patients, 14 Ab responders

n=54
3 trials
Median follow-up 8yrs
Stage III/IV HER2+
Autoantibodies correlate with response after CTLA4 MoAb in prostate cancer

SIMILAR

- Responders: greater intensity
- greater # Ag

DIFFERENT

- Cell cycle associated
- Nuclear
- 30% are kinases

Kwek et al, JI, 2012
Immune response signatures and clinical outcome

I. Approach and models

II. Serologic signatures

III. Peripheral blood cell signatures
Data mining approaches to develop lead candidates

Phase I, n=66

HR=0.598 (CI 95%, 0.41-0.85), p=0.004

Vaccinated (n=52)

SEER Age/stage matched controls (n=178)

Disis et al, JCO, 2002
Salazar et al, ASCO, 2009

Phase I/II, n=22

Median OS: 78m (6.5 yrs) (8-23 mo*)
Median PFS= 19m, 12% DFS (7-12 mo**)

Disis et al, JCO, 2009

Schaller et al, ASCO, 2005

Yamamoto et al, Can Chemo Pharm, 2008

Phase II, n=38

Interim analysis: estimated 63% PFS at 4 yrs

Expected: 44% at 4 yrs.

Salazar et al, 2012
Type I IFN signature in autoimmune disease

Associated with disease severity: SLE

Limited response to rituximab: active RA

Bennett et al, JEM, 2003

Raterman et al, Arth Res Ther, 2012
Specific autoantibodies may stimulate TLR and Type I IFN production from DC

- Th1/CTL induced necrosis
- DC entry facilitated by Ab Fc
- Epitope spreading
- Necrosis associated autoantibodies: X-Chromatin (SUPT 16H), X-RNA/DNA (SON-EEF1A1), X-nucleosome

- IL-12, IFN-g, GM
- Stam2
- Dap-1

- Activate TLR via bound RNA/DNA
- Initiates Type I IFN cascade
- Requirement for T-cell mediated tumor rejection*

*Diamond et al, JEM, 2011

Theofilopoulos et al, Ann Rev Immunol, 2005
Immune response signatures and clinical outcome

• Predictive and prognostic signatures, many based on the immune score, are being evaluated in clinical trials

• Signatures modulated by immunotherapy and predictive of outcome are being developed

• Retrospective data mining on successful therapeutic studies or even selected unique patients may provide candidates

• Ideal therapeutic response signature:
 • Associated with mechanism; not specific therapy
 • Operative across disease types
Collaborators

James Waisman
Breastlink

Steve Plymate,
FHCRC

Ted Gooley and
Katherine Guthrie,
FHCRC

Peter Cohen
Mayo Clinic

Kyong Hwa Park,
Korea University

Karolina Palucka
Baylor