Innate and adaptive immunity regulated from within the tumor microenvironment

Thomas F. Gajewski, M.D., Ph.D.

Professor, Departments of Pathology and Medicine
Program Leader, Immunology and Cancer Program of the University of Chicago Comprehensive Cancer Center

President, Society for Immunotherapy of Cancer (SITC)
Expression of a subset of chemokine genes is associated with presence of CD8$^+$ T cells in melanoma metastases

Patients with clinical benefit from immunotherapies

Chemokine/T cell gene expression signature is associated with survival following GSK MAGE3 protein vaccine

AS15: HR (GS+ vs GS-) = 0.268 (95%CI [0.08;0.90])
AS02B: HR (GS+ vs GS-) = 0.433 (95%CI [0.17;1.14])

Louahed et al., EORTC-NCI-AACR 2009
Two broad categories of melanoma metastases defined by gene expression profiling and confirmatory assays

- **T cell “rich”**
 - Chemokines for T cell recruitment
 - CD8+ T cells in tumor microenvironment
 - Broad inflammatory signature
 - Apparently predictive of clinical benefit to several immunotherapies

- **T cell “poor”**
 - Lack chemokines for recruitment
 - Low indicators of inflammation

What molecular mechanisms explain these two phenotypes?

What are the innate immune mechanisms that promote spontaneous T cell priming in some patients?

Gajewski, Brichard; Cancer J. 2010
1. Hypothetical mechanisms that could explain spontaneous T cell-based inflammation in tumor microenvironment in a subset of patients

A. Somatic differences at the level of tumor cells
 – Oncogene pathways differentially activated
 – Mutational landscape

B. Germline genetic differences at the level of the host
 – Polymorphisms in immune regulatory genes

C. Environmental differences
 – Intestinal microbiome
 – Immunologic exposure history of patients
A. T cell infiltrate in mouse melanoma can be excluded by expression of accessory oncogene in a genetic tumor model

Oncogene combinations that give melanomas with Tyr-CreER and topical 4-HO Tam:

- Braf V600E + oncogene X
- Braf V600E + oncogene Y
- Braf V600E + oncogene X + oncogene Y

Statistical significance:
- Braf V600E + oncogene X vs. Braf V600E + oncogene Y: p = 0.0003
- Braf V600E + oncogene X vs. Braf V600E + oncogene Y + oncogene Y: p = 0.0003
- Braf V600E + oncogene Y vs. Braf V600E + oncogene Y + oncogene Y: n.s.
B. Loss of inflamed gene expression pattern in B16 tumors grown in type I IFNR−/− mice

- Diminished expression of chemokines and T cell markers that recapitulates human subsets
- Implies that genetic variability in type I IFN pathway is one hypothetical mechanism that could explain differential immune phenotypes

Selected transcripts downregulated:

<table>
<thead>
<tr>
<th>IFN-induced genes</th>
<th>Chemokines</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFI27</td>
<td>CCL2</td>
</tr>
<tr>
<td>IFI44</td>
<td>CCL5</td>
</tr>
<tr>
<td>IFI202B</td>
<td>CXCL9</td>
</tr>
<tr>
<td>IFI203</td>
<td>CXCL10</td>
</tr>
<tr>
<td>IFI35</td>
<td>CXCL13</td>
</tr>
<tr>
<td>IFN-induced p30</td>
<td></td>
</tr>
<tr>
<td>IRF7</td>
<td></td>
</tr>
</tbody>
</table>

T cell markers

<table>
<thead>
<tr>
<th></th>
<th>Other immune genes</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCRα</td>
<td>CD40</td>
</tr>
<tr>
<td>TCRβ</td>
<td>CD83</td>
</tr>
<tr>
<td>CD3γ</td>
<td>CD86</td>
</tr>
<tr>
<td>Itk</td>
<td>FcγR1</td>
</tr>
<tr>
<td>Fyb</td>
<td>Complement C1q</td>
</tr>
<tr>
<td>Granzyme B</td>
<td>Complement factor B</td>
</tr>
<tr>
<td>Perforin</td>
<td>IL-18</td>
</tr>
<tr>
<td>CD28</td>
<td>CD68</td>
</tr>
<tr>
<td></td>
<td>Class II MHC</td>
</tr>
</tbody>
</table>
2. Innate immune signals—
type I IFNs and tumor sensing

How are anti-tumor T cells sometimes becoming spontaneously primed? What is the innate immune sensing mechanism that drives adaptive immunity against tumors?
What initiates spontaneous T cell priming and recruitment in a subset of melanomas?

Melanoma metastases that contain T cell transcripts also contain transcripts known to be induced by type I IFNs

A: IRF1

B: IFN-induced p30
Innate immune sensing of tumors drives host type I IFN production and cross-priming of CD8+ T cells via CD8α DCs

Fuertes et al; J. Exp. Med. 2011
Innate sensing toward IFN-β production
Tumor-derived DNA induces IFN-β production from DCs in an IRF3- and STING-dependent fashion

A: Tumor-derived preparations

B: IRF3 and STING-/-

DNA includes lipofectamine; RNA not effective
In vivo verification:
Host STING and IRF3 are required for spontaneous induction of CD8$^+$ T cell responses against tumor-derived antigen in vivo

A: STING$^{-/-}$

B: IRF3$^{-/-}$
Rejection of immunogenic tumors is ablated in STING^-/- mice

B16.SIY melanoma in 129 mice

Similar results in 3 immunogenic mouse tumor models
Model for tumor-induced DC activation and subsequent T cell priming

Woo et al; manuscript in preparation
3. T cell suppressive mechanisms

Why are TIL not eliminating the tumor cells they are infiltrating? Can we overcome this defect and restore tumor rejection?
Why are melanomas that do attract CD8+ T cell not rejected spontaneously?

- **IDO** (indoleamine-2,3-dioxygenase)
- **PD-L1** (engages PD-1)
- **CD4+CD25+FoxP3+Tregs**
- **T cell anergy** (B7-poor)

Correlated expression of IDO, FoxP3, and PD-L1 transcripts in individual tumors

Note: these are highest in tumors that contain CD8\(^+\) T cells
Presence of Tregs and expression of PD-L1 and IDO are associated with a CD8$^+$ T cell infiltrate

Correlations also between CD8$^+$ T cells and PD-L1, IDO
Expression of IDO and PD-L1 in B16 melanoma tumors growing in vivo depends on host CD8\(^+\) T cells and IFN-\(\gamma\)
Treg accumulation in B16 melanoma depends upon CD8$^+$ T cells but not IFN-γ.

- Treg recruitment appears to be regulated by chemokines (CCL22/CCR4).
- Also, no evidence for CD8s promoting migration or conversion.

Spaapen et al; manuscript submitted
Summary of regulation of immune suppressive mechanisms in the tumor microenvironment

• The three major immune inhibitory mechanisms confirmed to be present in the melanoma tumor microenvironment appear to be immune-intrinsic, driven by CD8+ T cells
• For IDO and PD-L1, IFN-\(\gamma\) is the major mediator in vivo
• For Tregs, CCL22 production by CD8+ effector cells is the major mediator, via CCR4 on Tregs (no evidence for Treg conversion or proliferation driven by CD8s)
• Blockade of these mechanisms represents attractive strategy to restore anti-tumor T cell function and promote tumor rejection in patients, and because these are intrinsic to the host they may be less mutable
• Clinical studies ongoing with anti-PD-1, IDO inhibitors, Treg targeting via CD25, and anergy reversal with homeostatic cytokines: already showing promise
Focusing in on T cell anergy

- A hyporesponsive state induced by TCR engagement in the absence of B7 costimulation
- Indirect evidence for involvement in tumor escape
- Functional overlap with “exhaustion”
- After anergy induction
 - T cells show defective TCR/CD28-induced Ras pathway activation (Fields et al. Science 1996) and blunted IL-2 production and proliferation
- Mechanism of anergy induction
 - Unbalanced activation of NFAT over AP-1 pathway: induction blocked by CsA, therefore is NFAT-dependent
 - Depends on new protein synthesis → induction of negative regulators
 - Recently identified diacylglycerol kinases (DGKs) as key inhibitors of Ras-mediated signaling in anergic cells (Zha et al Nature Immunol. 2006)
Further insight into T cell anergy: regulation by Egr2 driving DGK-α/ζ

Fields et al, Science 1996
Zheng et al, JEM In Press
Egr2 deletion leads to resistance to anergy induction \textit{in vitro and in vivo}

- CAR Tg x Egr2^{fl/fl} clones EV and Cre
- Treat cells Control plate-bound anti-CD3 (Anergic)
- Rest 1-2 days In medium
- Rechallenge with plate-bound anti-CD3+anti-CD28

IL-2

Control EV Control Cre Anergic EV Anergic Cre

Zheng et al, JEM In Press
T cell-intrinsic dysfunction (anergy): Strategy to determine global Egr2-driven transcriptional program in anergic T cells

- CAR Tg x Egr2fl/fl T cells: EV versus Cre
- Treat cells: Control versus plate-bound anti-CD3 (Anergic)
- Affymetrix gene expression profiling
- ChIPseq with anti-EGR2
- Merge datasets & Confirmatory qRT-PCR, ChIP assays

46 genes identified, including several surface proteins: LAG3 and CRTAM
Lag3 and Crtam are highly upregulated on a subset of CD8^+PD-1^+ TILs in B16 melanoma
Lag3^{+}\text{Crtam}^{+} \text{CD8}^{+} \text{TILs are defective in IL-2 production upon ex vivo stimulation}

The CRTAM+LAG3+CD8+ T cells also have blunted proliferation and express EGR2 and anergy-associated genes

Zheng et al, manuscript submitted
Tumor-infiltrating CD8⁺ T cells (brown) in human melanoma are EGR2⁺ (blue)

Implies that strategies to inhibit EGR2 pathway or target genes may have the potential to improve T cell function in human tumor context
Conclusions

• A T cell-inflamed tumor microenvironment may be a predictive biomarker for response to immunotherapies
 – Prospective analysis ongoing in GSK-Bio vaccine trials
• Innate immune “sensing” of tumors appears to occur via a STING-dependent pathway and host type I IFNs
• “Inflamed” tumors likely are not rejected due to dominant immune suppressive mechanisms
 – IDO, PD-L1, Tregs, Anergy: We can target these!
• Increased PD-L1, IDO, and Tregs in the tumor site are driven by CD8⁺ T cells in the tumor microenvironment
• A new set of surface markers driven by EGR2 may provide a strategy for identifying intrinsically dysfunctional CD8⁺ T cells from the tumor microenvironment, and may also regulate the anergic phenotype and be therapeutic targets
Acknowledgments

Melanoma gene array/Chemokines
Helena Harlin
Yuan-yuan Zha
Amy Peterson
Mark McKee
Craig Slingluff
Functional genomics core

Type I IFNs
Mercedes Fuertes
Robbert Spaapen
Seng-Ryong Woo
Aalok Kacha
Justin Kline
David Kranz
Hans Schreiber
Ken Murphy

Genetic melanoma model
Stefani Spranger

Uncoupling negative regulation
Robbert Spaapen
Justin Kline
Stefani Spranger
Ruth Meng
Yuan-yuan Zha
Christian Blank
Ian Brown

Innate immune sensing
Seng-Ryong Woo
Leticia Corrales
Mercedes Fuertes
Kate Fitzgerald
Glen Barber

T cell anergy/ChIP-SEQ
Yan Zheng
Yuan-yuan Zha
Albert Bendelac
Harinder Singh