Antibody-Based Therapeutics in Cancer

Helen Chen, M.D.
Investigational Drug Branch
Cancer Therapy Evaluation Program (CTEP)
DCTD
OUTLINE

• Basic concepts
 – Immunology of Ab
 – Types of Ab-based therapies

• Naked monoclonal antibody (mAb)
 – Mechanisms of action through Fv and Fc
 – Approaches to optimization

• Novel Ab constructs to expand the “effectors”
 – Redirecting T-cells to cancer cells
 – Redirect drug payloads to cancer (Ab-drug conjugates)
Basic structure of IgG

- **Bivalent monomer:**
 - 2 Heavy Chains:
 - Variable \((V_H)\) + constant \((C_H)\) regions
 - 2 Light chains: \(V_L + C_L\)
 - 4 subclasses:
 - IgG1, 2, 3 and 4

Figure 1. Potential anti-CD20 mAb effector mechanisms.

- **(A) Fc-Fc**
 - R–dependent mechanisms. The Fc arm of anti-CD20 mAb recruits and activates Fc
 - RI/RIIIa (CD16) with a high affinity for IgG
 - Fc-polymorphisms of Fc
 - RI/RIIIa (CD16) with a high affinity for IgG

- **(B) CDC**
 - Complement fixation occurs when C1q, the globular head of C1, binds the Fc portion of 2 IgG molecules, which triggers a series
 - of enzymatic reactions that generate pores in the cell membrane (membrane attack complex) leading to cell lysis.

- **(C) Direct PCD**
 - Induced primarily by type II anti-CD20 mAbs
 - Direct phagocytosis (macrophages).

- **(D) Adaptive cellular immunity.**
 - Anti-CD20 mAbs promote the uptake of tumor antigens by dendritic
 - immune effector cells, including macrophages and NK cells, which in turn eliminate the target cell by release of cytotoxic mediators in ADCC (NK cells and macrophages) or

From bloodjournal.hematologylibrary.org

- Evidence has emerged to suggest a potential role for passive
- Immune effector cells, including macrophages and NK cells, which in turn eliminate the target cell by release of cytotoxic mediators in ADCC (NK cells and macrophages) or

Adaptive immunity?

Clinical responses.

- Complement-dependent cytotoxicity (CDC), and the direct
- Antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis. These include mAb Fc-Fc
- appear to eliminate their targets by engaging in a range of effector
- mAbs work?

Antibody induced immunization

- The relative contribution of each of these mechanisms appears
- to be at least partially dependent on the mouse model and type of
- anti-CD20 mAb used.

VH:

- C1q
- Complement dependent cytotoxicity
- CDC

Fc:

- Binding to host effector cells
- Fc-Fc
- Fv binding site

VH:

- Fv-mediated target binding
- Complement dependent cytotoxicity
- CDC

Fc:

- Fc-Fc dependence on activatory Fc
- Activatory Fc
- R-expressing immune effector cells
- ADCC
Key features of antibodies

• Through Fv, diverse and exquisite specificities against target antigens, or epitopes (Immunoglobulin variable gene rearrangement in B cells and hypermutation)

• Through Fc, ability to engage host immune components to targets (complement, NK cells, macrophages, neutrophils, DC)

• Distinct MOA from cellular immunity
 – Unlike TCR, Abs recognize unprocessed antigens independent of MHC

• Potential as a therapeutic platform:
 – Cell-free protein product
 – Long half-lives (150 KD MW), unlikely to have PK interactions with small molecules
 – Vast repertoire of B-cells with unique Fv regions for targets of interest
 – Modifiable for variable sizes and novel constructs: full IgG, Fab, scFv ….bispecific Ab, drug conjugates
History of monoclonal antibodies (mAb) for therapy

• 1975: First murine MAb from hybridoma (Kohler and Milstein, Nature)

• 1982: Anti-idiotypic mAb against lymphoma (Millar and Maloney)

• 1980’s-90’s: Humanization of murine Abs
 – Recombinant chimeric Ab (’84)
 – CDR grafting → humanized Ab (’86)

• 1998: Fully human Mab:
 – XenoMouse
 – Phage scFv library

• Novel construct: Bispecific; Ab-drug-conjugate …

• 1997 - 2012: > 20 mAbs approved for cancer therapy
Approved agents and New progress

<table>
<thead>
<tr>
<th>Targets</th>
<th>Approved</th>
<th>New/emerging (a partial list)</th>
</tr>
</thead>
</table>
| • **Tumor or stromal cell growth/survival factors** | *Cetuximab, Panitumumab
*Trastuzumab, Pertuzumab
* Bevacizumab, VEGF-TRAP | • Erb3, c-MET, HGF
• FGF, Angiopoietin |
| • **Tumor Ag** (action through effectors) | *Rituximab, *Ofatumumab;
*Alemtuzumab | • Ch14.18 (anti-GD2) |
| • **Host immunity** (immunemodulator) | *Ipilimumab | • PD1/PD-L1; CD40; OX40, 4-1BB
• CD137, CD25 |
| • **Ab-cytotoxic conjugate** | *Ibritumomab (zevalin)
*Toxitumomab (baxxar);
*SGN-35 | • Trastuzumab-DM1
• CD19, CD22, CD56
• PSMA, EphA2, Integrin, |
| • **Bispecific mAb** | *Catumaxomab (EPCAM xCD3 x FcR) | • Blinatumomab (CD19xCD3 BiTE)
• EpCAM xCD3 BiTE |

* * indicates experimental use only.
Unlabeled Full IgG Antibody Therapies

» Mechanism of action
» Strategies of optimization
Mechanism of Action of mAbs

Mediated by Fv binding to targets
- **Block target signaling**
 *EGFR, HER2
 *CTLA4
- **Induce program cell death**
 *Rituximab
- **Stimulate target signaling**
 *CD40, OX40 on T cell
 *TRAIL-DR5 on tumor cells

Mediated by Fc binding with innate host immune system
- **ADCC** (Fc-FcR mediated)
 *Rituximab
 *Others (IgG1 mAb against HER2, EGFR)
- **CDC** (Fc-complement)
 *Campath-1H

Adaptive Immunity through FcR on APC?
- *Reported with rituximab and trastuzumab

Not all MOA apply to all mAbs. Relevance to efficacy may differ by the target, the clinical setting and the agent

Attempts to improve the efficacy of full IgG mAbs
- **Optimize the Ag-binding site**
- **Enhance the Fc mediated effector functions**
 - Fc modulation
 - Combination with immune cytokines
Optimize the Ag-binding site (Fv) ... for the right epitopes and affinities (1)

Hundreds of unique mAbs can be created against a single target molecule, that recognize different epitopes, with variable affinities ... not all Ab drugs for a target are created equal

The antigen-bindings sites may be selected or optimized for desired features:

- Different mechanisms of antitumor effect:
 * Rituximab → GA101;
 * Trastuzumab → pertuzumab

- Agonist vs. Antagonist
 * CD40 agonist (CP-870,893) - as immunotherapy *
 * CD40 antagonist (CHIR-12.12) - as tumor - targeting agent (e.g. CLL)

- Different affinity or avidity ...
Is higher affinity better?

- Higher affinity has better target engagement and ADCC
- However, too high an affinity is not always desirable
 - Lower penetration in tumor
 - Excessive activation of effector cells (some anti-CD3 mAbs)

Affinity should be optimized for different settings

- solid vs. “liquid” tumors
- Tumor vs. host immune cell targets

Tumor update of anti-HER2 Fv with different affinities in mice

(10^{-7}-10^{-9} were optimal)

Adams et al, Ca Res, 2001
Enhance the host effector cell function (including ADCC)

Is ADCC a MOA of antitumor effects in patients?

- Direct in vivo evidence of ADCC is not available. However, there are indirect evidences:

 - Preclinical:
 • Knockout of FcγR gene in mice or mutation of Ab Fc can reduce antitumor effects of anti-CD20 and anti-HER2 antibodies

 - Clinical:
 • In patients, polymorphism of the host FcR receptor affected activity of rituximab in follicular lymphoma ...
Host Fc Receptor polymorphism and mAb Activity

FcγRIIIA polymorphism (4985G>T) with phenylalanine (F) to valine (V) substitution at aa position 158

- **158 V/V** has greater affinity Fc compared to **158 F/F** → greater ADCC in vitro

- **Rituximab in FL:** 158 V/V Predicted better response than F/F
 - 92-100% VS. 53-64%

Study 1: Follicular Lymphoma Patients Receiving Rituximab Monotherapy

- **V/V**: 100% Response, 0% Non-Response
- **F/F**: 67% Response, 33% Non-Response

Study 2: Follicular Lymphoma Patients Receiving Rituximab Monotherapy

- **V/V**: 92% Response, 8% Non-Response
- **F/F**: 59% Response, 41% Non-Response

Impact of in FcγRIIIa in mAb Activity

- Conflicting results from other studies:
 - FcγRIIIA 158 V/V not predictive for rituximab in
 - CLL, or
 - rituximab + chemo in NHL
 - In solid tumors: results inconsistent

C225 + CPT-11 (n=69):
FcγRIIa-131H/H and FcγIIIa-158V/V: better PFS than 131R and 158F carriers

C225 alone (n=39):
FcγRIIa-131H and FcγIIIa-158F better than 131R and 158 V

Trastuzumab + taxol (n= 54):
FcγRIIa-131H and FcγIIIa-158V/V better
Factors that may impact the Fc-mediated innate host immunity

Host factors:
- FcR polymorphism
- Type of effector cells (PMN, NK, macrophages) and FcRs involved in the interaction

mAb factors:
- **Fv:** affinity and epitopes
- **IgG1** vs. **IgG2** … *IgG1 if ADCC is desirable. IgG2 to avoid ADCC (e.g. for host-cell targeting mAbs)*

Fc chemistry
- A.A. sequence
- Glycosylation (fucose content)

Tumor factors:
- Tumor microenvironment may be suppressive of NK and CTL
- **Access to effector cells**
 - Solid vs. liquid tumors
 - Bulky vs. minimal residual diseases
Improving the features of mAb - Example of anti-CD20 mAbs

Rituximab: a prototype anti-CD20 mAb (chimeric IgG1)

- Fc-FcγR
- ADCC
- CDC
- Ab-induced programmed cell death (PCD)
 - Fv interacts with lipid raft (type I epitope)
- Adaptive immunity?
Evolution of anti-CD20 mAbs

• 2nd generation … humanized mAb
 – Ofatumumab – c/w rituximab:
 • Type I epitope (closer to membrane, slower off rate) → ↑ CDC (10x)
 • Clinical activity:
 – CLL: ORR in refractory CLL (58%, 47%) – FDA approved;
 – FL: 11% in rituximab-refractory tumors

• 3rd generation …Fc modification
 – AME-133v
 • Type I epitope, higher affinity
 • Fc modified (a.a. substitution) → ↑ affinity for 158 F/F; ↑ ADCC (5-7X)
 • Phase I – ORR 5/23 in FL in pts with low-affinity FcR (158 F/F or F/V)

 – GA101
 • Type II epitope → more Programmed Cell Death
 • Fc modified (non-fucosylated)

GA101 Demonstrated Increased Direct Cell Death (DCD) and ADCC

- More direct cell death with GA101 vs rituximab
- ~100-fold higher ADCC than rituximab and ofatumumab

Randomized Phase 2 Trial in Relapsed iNHL
(GAUSS Trial)
- GA101 vs. rituximab in patients had prior rituximab more than 6 months before study (N = 175)

Response at End of Induction (Primary Endpoint)

<table>
<thead>
<tr>
<th>Patients with follicular lymphoma</th>
<th>Rituximab (n = 75)</th>
<th>GA101 (n = 74)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate (ORR)</td>
<td>20 (26.7%)</td>
<td>33 (44.6%)</td>
</tr>
<tr>
<td>CR/CRu</td>
<td>3 (4.0%)</td>
<td>4 (5.4%)</td>
</tr>
<tr>
<td>PR</td>
<td>17 (22.7%)</td>
<td>29 (39.2%)</td>
</tr>
</tbody>
</table>

- Clinical data with Fc-modified anti-CD20 mAbs were interesting but,
 - Contribution of ADCC effects uncertain
 - both Fv vs. Fc were modified from rituximab
 - No Head to head comparison to rituximab in rituximab naïve patient
- Other Fc-modulated mAbs in development: CD19, HER2 …
Combination of mAbs with cytokines
- Example of chimeric anti-GD2 mAbs (Ch 14.18) in neuroblastoma

Background:
- **GD2:** overexpressed in neuroblastoma, melanoma
- **Chimeric anti-GD2 (ch14.18)** produced at NCI in 1989
- **In vitro findings:** ADCC by anti-GD2 mAb was by GM-CSF or IL-2

Early clinical experience with ch14.18
- Single agent in advanced disease → modest activity (<10%)
- Combination with GM-CSF → encouraging activity (20-30%)
- Pilot study of ch14.18 +GM-CSF/IL2 in MRD (CCG0935) → feasible

Hypothesis: Ch14.18 plus cytokines may be active in NB MRD
- 2001: Phase III trial ANBL0032
 - PI: Alice Yu
 - Children’s Oncology Group
 - Sponsor: CTEP
ANBL0032 – a phase III trial with immunotherapy + Ch14.18 in high risk neuroblastoma

Dx → Induction chemotherapy → ASCT

- No ImmunoRx 13-cis-RA
- 13-cis-RA

Experimental arm: immunotherapy

<table>
<thead>
<tr>
<th>Course 1</th>
<th>Course 2</th>
<th>Course 3</th>
<th>Course 4</th>
<th>Course 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ch14.18</td>
<td>Ch14.18</td>
<td>Ch14.18</td>
<td>Ch14.18</td>
<td>Ch14.18</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Aldesleukin (IL-2)</td>
<td>GM-CSF</td>
<td>Aldesleukin (IL-2)</td>
<td>GM-CSF</td>
</tr>
<tr>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
<td>RA</td>
</tr>
</tbody>
</table>

PI: Alice Yu
Children’s Oncology Group
Sponsor: CTEP
Ch14.18 + Cytokines Improves Event-free Survival and Overall Survival For High Risk Neuroblastoma

Yu et al, NEJM 2010

Additional development of anti-GD2 mAbs:
• Combination with lenalidomide to enhance effector function
• Ch14.18-IL-2 fusion protein
• Humanized version
Can passive immunotherapy (e.g. Tumor-targeting IgG mAb) induce active immunity?
Can passive immunotherapy induce active immunity?

- **Preclinical data**: anti-CD20 mAb protected mice from tumor challenges *(Abes et al, Blood 20010)*

 - Protection not transferrable via sera. Required CD4 /CD8 cells
 - Protection was specific to CD20+ tumors
 - Protection cannot be achieved by other cytotoxic agents (indicating possible requirement of Fc/FcR interaction rather than just Ag release from cell kill)
Can passive immunotherapy induce active immunity?

- **In patients**, Rituximab induced lymphoma idiotype-specific T cell response (*Hichey et al, Blood 2009*)

ELISpot assay for IFNγ-producing T-cells:
- Id-specific T cells significantly increased after rituximab therapy

- Rituximab capable of inducing active immune responses
- No evidence that this mechanism is necessary or sufficient for efficacy
- However, such a potential mode of action is attractive and should be explored for optimization
OUTLINE

• Basic concepts
 – Immunology of Ab
 – Types of Ab-based therapies

• Unmodified full IgG mAb
 – Mechanisms of action through Fv and Fc;
 – Approaches to optimization

• Novel constructs to expand the “effectors”
 – Redirecting T- cells to cancer cells
 – Redirect drug payloads to cancer (Ab-drug conjugates)
 – … others
Ab-Drug Conjugates (ADCs)

» Many ADCs
» Few successes
» Lessons learned
Ab-drug Conjugate (ADC) and Critical elements

Antigen targets:
- **Solid tumor:**
 - PSMA
 - MUC1
 - Mesothelin
 - CanAg
 - GPNMB
 - CEA
 - Integrin
 - Cripto-1
 - EphA2
 - Her-2
- **Hem:** CD19, 56, 70, **22, CD30, 33**

Cytotoxic payload:
- Calicheamicin
- Maytansine (DM1/4)
- Auristatin (MMAE)
- Toxins

Linkers:
- **Hydrazone** – relatively unstable in plasma → premature release of chemo
- **Disulfide**
- **Thioether**
- **Peptide**
- ...

Elements critical to success:
- Target Ag expression in tumors vs. normal tissues
- Linker selection
- Intrinsic sensitivity of tumor cells to the chemotherapy
Activities of ADC

<table>
<thead>
<tr>
<th>Target</th>
<th>Activity</th>
</tr>
</thead>
</table>
| SGN-35 (Brentuximab vedotin) | • **ALCL**: 86% (57% CR)
• **HD**: 75% (34% CR)
*ORR was 10-20% with unmodified anti-CD30 mAb |
| Trastuzumab-DM1 (T-DM1) | • **Pts with** HER2+ *(IHC 3+ or FISH+)* breast ca
• **ORR 37.5%** *(Burris et al, JCO 2011)*
Phase III for T-DM1 vs. lapatinib + capcitabine
• Significant improvement in PFS and OS |

Many ADCs had been in development

- Similar linkers and payload
- Similar to Her2 and CD30, targets are shared by normal tissues … *Unlike CD30, normal tissues with solid tumor targets may be more prone to toxicities* *(Skin, GI)*
- Target expression variable among patients …. *Unlike T-DM1, reliable assays not always available to select tumors with overexpression*

Proper target and/or patient selection are essential to success with ADC
Re-directing T cells through mAb engineering

Examples:

» T-body (Chimeric Ag Receptor, or CAR)

» Bispecific Mab - Tumor Ag binding + CD3 binding
Chimeric Ag Receptor (CAR) – Replacing the TCR variable region with scFv

Engineered TCR for CAR → T-cell transduction

- scFv (to tumor Ag)
- T-cell costimulatory molecule (CD28, CD3ζ or CD137)

Adoptive transfer of CAR modified T cells

- Transduction
- Expansion
- Enrich transgene-expressing T cells
- PBMC collection
- Infusion
- Lymphodepletion conditioning therapy

Clinical trials to date
- FBP (folic acid R); CEA (GI); CAIX (RCC)...
- EGFRvIII
- CD19; CD20
- HER2
- others

Gene transcription

Combing the diversity of mAb with potency of T cells

Turtle et al, Cur Opinion in Immunol 2012

1st generation: scFv + TCR signaling domain
2nd generation: scFV + CD28
3rd generation: scFv + CD3ζ + CD28 or CD137 (4-1BB)
Clinical Experience: CD19 CAR

(Porter et al, NEJM 2011)

- **Construct**: Anti-CD19 scFv + CD3-CD137 modified T cells
- **Rx**: nonablative myelosuppression → adoptive T cell transfer (1 x 10^5 CD19 CAR cells)
- **Patient**: w/ refractory CLL, received low dose

Outcome: Significant CD19-CAR T cell expansion around D10; Persistent after 6 months

- Cytokine release (IFN-γ, CXCL9/10, IL6)
- Tumor lysis syndrome
- Complete remission by D28

(Kochenderfer et al, Blood 2011)

- Similar results from NCI using (scFv-CD3-CD28):
 - 5 PR, 1CR (7-15+m) in 8 pts
Clinical Experience: HER2 CAR

Case report: (Morgan et al, Mol Therapeutics 2010)

HER2-CAR (ERB2 scFv + CD3-CD28-137) – modified T cell transfer in a patient with HER2+ colon cancer with lung and liver metastases

- Respiratory distress, cytokine storm 15 minutes after infusion. Died from multi-organ failure in 5 days

- Autopsy:
 - Lung alveolar damage; microangiopathy
 - CAR cell infiltrates mainly in LN and lungs
 - No differential distribution to tumor metastases (HER2 3+)
 - Low level of normal tissue (including lung) expression of HER2

- The construct is highly specific and potent in activating T cells upon Ag recognition

- Low level of target expression in the lung appeared to make lungs the “first-pass” organ after HER2 CAR
Re-directing T cells by Ab specificity

» T-body (Chimeric Ag Receptor, or CAR)

» Bispecific Mab - *Tumor Ag binding + CD3 binding*
 - Many attempts
 - EPCAM x CD3 x (FcR) – *Trifunctional Catumaxomab* – approved for malignant ascites for patients with ovarian cancer
 - CD19 x CD3 (CD19 BiTE) - *Blinatumomab*
Blinatumomab (MT103), a **Bispecific T-Cell Engaging (BiTE®)** Antibody

(A) Anti-CD19 Antibody

![Diagram](image)

Construct (Tandem scFv):
- Linking the VH-VL of a murine anti-19 mAb with an anti-CD3 mAb
- MW (55kD) – short half-life (2-3 hrs)

Kinetic Constants:
- $K_d_{CD19} = 1.49 \times 10^{-9} \text{M}$
- $K_d_{CD3} = 2.60 \times 10^{-7} \text{M}$
Blinatumomab (AMG-103) - MOA

- **MOA**
 - **Signaling**
 - **B Lymphoma Cell**
 - **Cytotoxic T Cell**
 - **CD19**
 - **CD3**
 - **CD69**
 - **CD25**
 - **Apoptotic Cell Death**
- **T cell Proliferation**
 - **Formation of cytotoxic T-cell synapses with tumor cell**
 - **Tumor and B cell lysis**
 - **T-cell proliferation and activation in situ**

- **Synapses**
 - **Granzyme**
 - **Perforin**

- **Redirected Cell Lysis**

- **MHC independent, polyclonal activation of T cells, but only upon presence of target Ag**
- **Bypass typical T-cell immune suppressive mechanisms**
- **Does not require costimulatory molecules**
CD19 BiTE induced T-cell proliferation and maturation in patients

PBL from patients with ALL MRD treated with MT103

A

![Cell Count (10^3/µL) over Time (days) for CD4+ T cells, CD8+ T cells, and B cells](chart_A.png)

- **CD4+**
- **CD8+**
- **B cells**

B

![Cell Count (10^3/µL) over Time (days) for Naive CD8+ T cells, CD8+ TCM cells, CD8+ TEM cells, and CD8+ TEMRA cells](chart_B.png)

- **CD8+ TEM**

Effector memory T cell (TEM)

Central memory T cells (TCM)

Topp et al JCO 211
CD19 BiTE activity in B-cell ALL

- **MRD:** Phase 2 in adult with MRD after chemotherapy *(Topp et al JCO 2011; Topp et al, Blood 2012)*

 15 µg/m²/d continuous infusion - 4 wks on / 2 wk off (*3 cycles after CR*)

<table>
<thead>
<tr>
<th>Molecular CR</th>
<th>Relapse free survival</th>
</tr>
</thead>
<tbody>
<tr>
<td>16/20 (80%)</td>
<td>61% at 33 m</td>
</tr>
</tbody>
</table>

- **Relapsed/refractory diseases:** Phase 2 in adult ALL *(Topp et al ASCO 2012)*

 Step-up dosing schedule 5 → 15 µg/m²/d

<table>
<thead>
<tr>
<th>CR</th>
<th>Duration of CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>17/23 (72%)</td>
<td>44% CR</td>
</tr>
<tr>
<td></td>
<td>28% CRh</td>
</tr>
<tr>
<td></td>
<td>8.9 m (median)</td>
</tr>
<tr>
<td>*15/17 with molecular CR</td>
<td></td>
</tr>
</tbody>
</table>

Pivotal trial in pediatric ALL MRD ongoing
CD19 BiTE in B-cell lymphoma

Phase 1 dose-escalation trial in B-cell NHL

- **Activity (dose dependent):**

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Patients</th>
<th>CR</th>
<th>PR</th>
<th>Overall RR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5 – 5 µg/m²/24 h</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0/13</td>
</tr>
<tr>
<td>15 & 30 µg/m²/24 h</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td>4/20</td>
</tr>
<tr>
<td>60 µg/m²/24 h</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>8/9*</td>
</tr>
<tr>
<td>90 µg/m²/24 h</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2/4#</td>
</tr>
</tbody>
</table>

*Durable PR/CR in MCL, CLL and FL

AEs:
- CNS events at 60 µg/m²/d: confusion, Seizure
- Patients with low peripheral B cells at higher risk

* **Mitigation strategy:** Stepwise increment to target dose (5 → 15 → 60 µg/m²/d)
Safety

• **Common toxicities with MT103**
 – Cytokine release syndrome – more serious in ALL with high tumor bulk
 – lymphopenia

• **Neurological /psychiatric AEs –**
 – G1-3: HA, dizziness, tremor, aphasia, encephalopathy, cerebellar syndrome, Seizure
 • Mostly occurring in cycle 1; reversible
 – Dose-related
 • *In ALL* (15 µg/m²/d): 2/20 discontinued therapy
 • *In NHL* (60 µg/m²/d or higher): 12 patients discontinued therapy
 – Possible risk factor: Low peripheral B cell count at baseline

Step-up dosing schedule and steroids feasible and effective in ALL
EpCAM BiTE (MT110)

The target:
- Epithelial adhesion molecule. Also present also on cancer stem cells.
- In tight junction in normal tissues

Phase I dose escalation trial in advanced solid tumors

(Fiedler et al, ASCO 2012)

- **Safety and Doses:**
 - Not tolerable at > 10 µg/m²/d with standard schedule
 - DLT: diarrhea, abdominal pain, LFT (*LFT associated with first dose*)
 - 5 different dosing schedules were explored
 - Step up dosing required

- **Activity** (n=43 evaluable, at different dose/schedules)
 - Reduction in circulating tumor cells. SD 35%
 - NO PRs

BiTE antibodies in development
- CD19
- CD33
- EpCAM
- CEA
- EGFR
- Eph2
- HER2
What have we learned about T-cell engaging Ab- approaches

Bispecific antibodies, BiTE, CARs

- Use of Ab to redirect T cells to target cells is a powerful strategy
 - Potent and specific
 - MHC independent
 - May bypass typical immune-suppressive mechanism

- Encouraging data in hematological malignancies

Challenges:

- T-cell activation can induce significant toxicities (target-triggered cytokine release or target-mediated tissue damage)
 - Challenging for many solid tumor targets

- Careful selection of target and development of mitigation strategy will be critical to achieving therapeutic window
Summary and future directions
Summary

- Exquisite specificity, and ability to carry “effector arms” (native or engineered) is unique among drug modalities
- Successes with: IgG mAbs targeting the tumor antigens, host immune cells and stromal factors; ADCs; Bispecific Abs
- New technology will continue to generate new designs and constructs

Considerations:

- Better understanding of MOA, especially in relationship to host immune system
- Identification / prioritization of targets
 - cancer genome project (surface molecule with somatic mutations?)
 - Phase display library screen
- ... chose the right construct (“effector arm”) appropriate for the target
- ... in the right patients using biomarkers for patient selections