Combining Immunotherapy and Targeted Therapy in Melanoma

8:45 am - 9:15 am

Antoni Ribas, M.D., Ph.D.
Professor of Medicine
Professor of Surgery
Professor of Molecular and Medical Pharmacology
Director, Tumor Immunology Program,
Jonsson Comprehensive Cancer Center (JCCC)
University of California Los Angeles (UCLA)
Disclosure Information
Antoni Ribas

I have the following financial relationships to disclose:
• Consultant for: Kite Pharma
• Speaker’s Bureau for: None
• Grant/Research support from: None
• Stockholder in: Kite Pharma
• Honoraria from: Amgen, Celgene, Genentech-Roche, GSK, Millennium, Novartis, Prometheus
• Employee of: None

-and-

• I will discuss the following off label use and/or investigational use in my presentation: vemurafenib
Limitations of Tumor Immunotherapy

1. Suboptimal antigen presentation
2. Low frequency of tumor antigen-specific T cells
3. Limited CD8+ CTL activation and expansion (CTLA4, PD1)
4. Lack of antigen recognition (Low TAP, MHC)
5. Immune suppressive tumor milieu (Treg, MDSC, IDO, VEGF, IL-10, PgE2, TGF-β)
6. Insensitivity to pro-apoptotic signals from immune cells

Cancer Immunotherapy

Immunosensitization
Immunosensitization with Targeted Therapies

- Desired features for an immune sensitizing agent:
 - On tumor cells:
 - Target a key oncogenic pathway
 - Inhibit anti-apoptotic molecules
 - Increase pro-apoptotic molecules
 - Increase ligands for immune cells (tumor antigen, MHC, NK activating receptors)
 - On immune system cells:
 - Not kill immune cells
 - No interference on key signaling events in immune system cells (TCR, NK receptor)

Perspective

Targeted Therapies to Improve Tumor Immunotherapy
Jonathan Begley1,2 and Antoni Ribas2,3,4
Testing of the Concept of Immunosensitization in Animal Models

- Bortezomib (proteasome inhibitor) to sensitize to NK cells
 - Schumacher et al. JI 2005

- ABT-737 (Bcl-2 inhibitor) to sensitize to T cells
 - Begley et al. CII 2008

- LAQ824 (HDAC inhibitor) to sensitize to T cells
 - Vo et al. CR 2009
CD8+ T Cell

Melanoma Cell

Death Receptor

Caspase-8

Procaspase-8

GmB

GrnB

Perforin

Apoptosis

Effector Caspases

Bcl-2 Inh

Bcl-2

Bcl-w

HDAC Inh

FLIP

Caspase-8

Apaf-1

Cytochrome C

IAP'S

Caspase-9

Proteasome Inh

Proteasome Break

Signal Transduction Pathway

Receptor

Tyrosine Kinase

TKi?
Testing of the Concept of Immunosensitization in Animal Models

- Bortezomib (proteasome inhibitor) to sensitize to NK cells
 - Schumacher et al. JI 2005

- ABT-737 (Bcl-2 inhibitor) to sensitize to T cells
 - Begley et al. CII 2008

- LAQ824 (HDAC inhibitor) to sensitize to T cells
 - Vo et al. CR 2009

- PLX4032 (BRAF inhibitor) to sensitize to T cells
 - Comin-Anduix et al. CCR 2010
 - Koya et al. CR 2012
Pre-clinical evidence supporting the feasibility of combinations of BRAFi + immunotherapy

Oncogenic BRAF-induced production of immune suppressive factors (IL-6, IL-10, VEGF) is inhibited with a MEK inhibitor

Vemurafenib increases melanosomal antigen expression and T cell recognition

Human T cells exposed to vemurafenib are fully functional
Pre-clinical evidence against the feasibility of combinations of BRAFi + immunotherapy

Selective BRAF inhibition decreases tumor-resident lymphocyte frequencies in a mouse model of human melanoma

PLX4720 treatment leads to a decreased frequency of immune cells in BRAFV600E/PTEN-/- melanomas and this cannot be restored by CTLA-4 blockade

Addition of anti-CTLA-4 mAb treatment to PLX4720 treatment does not further improve tumor growth control
Clinical evidence supporting the feasibility of combinations of BRAFi + immunotherapy

CD8+ T cell infiltration in regressing melanoma lesions after BRAFi therapy

T cells from patients treated with dabrafenib are fully functional
How can BRAF targeted therapy increase the activity of tumor immunotherapy?

- Increased antigen presentation
- Increased antigen cross-presentation
- Activation of T cells and increased homing
- Decreased immune suppressive factor release

BRAF, BRAFi
SM1: A BRAF^{V600E}-driven Melanoma Syngeneic to Immunocompetent Mice

Richard Koya, MD, PhD
Stephen Mok

Koya <i>et al.</i> Cancer Res 2012
Gene copy number variations (CNV) in SM1 is similar to human melanomas.
pmel-1 ACT immunotherapy + BRAF targeted therapy against SM1 (murine melanoma driven by $BRAF^{V600E}$)

3 replicate experiments, $p < 0.0001$ by log rank test
How can BRAF targeted therapy increase the activity of tumor immunotherapy?

Koya et al. CR 2012:
- No change in gp100 or MHC expression by SM1 exposed to vemurafenib
- No change in adoptively transferred T cell distribution by BLI
- No increase in intratumoral infiltrates by adoptively transferred T cells
Differential effects of BRAF inhibition in $BRAF^{V600}$ mutant melanoma and activated T cells

$BRAF^{V600}$ mutant melanoma

Activated T cells

Paradoxical MAPK activation with RAF inhibitors

Paradoxical activation of pERK with exposure of lymphocytes to vemurafenib

Koya et al. Cancer Res 2012
Conclusions

• Novel targeted therapies may synergize with immunotherapy:
 – Improve antigen presentation
 – Sensitize cancer cells to apoptotic death
 – Inhibit suppressive factors in the tumor
 – Improve lymphocyte function

• In a mouse model, increased benefit of a BRAF inhibitor with ACT immunotherapy is mediated by:
 – Increased immune cell functionality (paradoxical MAPK activation)
 – Modulation of the tumor microenvironment?
Acknowledgements

Richard Koya, MD, PhD
Stephen Mok
Begonya Comin-Anduix, PhD
Thinle Chodon, MD, PhD

Ribas lab

Tom Graeber, PhD
Ashley Cass
Aspram Minasyan
Nick Graham, PhD