Treatment of Non-Hodgkin Lymphoma with Central Memory Derived CD19-Specific CAR-Transduced T Cells

Leslie Popplewell¹, Christine Brown¹, Xiuli Wang¹, Araceli Naranjo¹, Jamie Wagner¹, Wen-Chung Chang¹, William Bretzlaff¹, Brenda Chang¹, Desiree Daniels¹, Julie Ostberg¹, Renate Starr¹, ChingLam W. Wong¹, Suzette Blanchard², Michelle Mott³, Bernadette Pulone³, Stanley Riddell⁴, Michael Jensen⁵, and Stephen Forman¹

¹Department of Hematology & Hematopoietic Cell Transplantation, Beckman Research Institute, ²Department of Information Sciences, and ³Nursing Department, COHNMC, Duarte, CA;
⁴Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA.
⁵Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA
Disclosures

• M. Jensen is an inventor of licensed patents and equity holder in ZetaRx, Inc., a licensee of these patents.

• All other authors have no conflicts of interest to disclose.
Adoptive T Cell Therapy for Cancer

- **T Cell Donor** (Autologous or Allogeneic)
- **Isolate Cytotoxic T Lymphocyte**
- **Engineer Cytotoxic T Cells to Express Tumor Specific Chimeric Antigen Receptors**
- **Patient Recipient**
- **Adoptive T cell Transfer**
- **Expand Tumor Specific T Cells Ex Vivo**
The Chimeric Antigen Receptor (CAR)

CD19-specific scFv

huIgG4 hinge-Fc

huCD4_{TM}

huCD3-ζ_{cyto}
Persistence of Transferred T Cells Correlates with Cancer Regression

Strategies to Improve T Cell Persistence:

- Incorporate lymphodepletion regimens prior to ACT
- Optimize CAR design for improved co-stimulatory signaling
- Reduce transgene immunogenicity
- **Engineer T cell subsets with the propensity for long-term persistence (i.e., memory T cells)**
Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates

Carolina Berger,1 Michael C. Jensen,2 Peter M. Lansdorp,3,4 Mike Gough,5 Carole Elliott,5 and Stanley R. Riddell1,6

1Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. 2Division of Cancer Immunotherapeutics and Tumor Immunology, City of Hope National Medical Center, Duarte, California, USA. 3Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada. 4Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada. 5University of Washington National Primate Center, Seattle, Washington, USA. 6Department of Medicine, University of Washington, Seattle, Washington, USA.

J. Clinical Investigation 2008

Engraftment of human central memory-derived effector CD8+ T cells in immunodeficient mice

Xiuli Wang,1 Carolina Berger,2 ChingLam W. Wong,1 Stephen J. Forman,1 *Stanley R. Riddell,2 and *Michael C. Jensen1,3

1Department of Cancer Immunotherapeutics & Tumor Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA; 2Program in Immunology, Fred Hutchinson Cancer Research Center, University of Washington School of Medicine, Seattle, WA; and 3Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA

Blood 2010
Distinct Fate of Effector T Cells Derived from T_{EM} vs T_{CM} Following ACT in Non-Human Primate

Berger et al J Clin Invest 2008
T_{CM} Derived Human Effectors Exhibit Superior Engraftment to T_{EM} Derived Counterparts Following Adoptive Transfer

Wang et al. Blood 2011
Engraftment Fitness and Anti-Lymphoma Activity of CD19CAR+ T Cells Derived from T_{CM} vs T_{EM}

A

% human CD45+ cells

- Blood
- BM
- Spleen

<table>
<thead>
<tr>
<th>TcmCD19R</th>
<th>TemCD19R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blood</td>
<td>Blood</td>
</tr>
<tr>
<td>BM</td>
<td>BM</td>
</tr>
<tr>
<td>Spleen</td>
<td>Spleen</td>
</tr>
</tbody>
</table>

B

Phontons/sec

- TcmCD19R T cells
- Control

Days

- CD19+ Tumor i.v.
- T cell i.v.

City of Hope
Platform for Manufacturing
\(T_{CM} \) Derived CD19CAR\(^+\) T Cells

Day 1: Leukapheresis

Day 2: CliniMACS Selection of Tcm; Dynabead stimulation

Day 5: Lentiviral Transduction; Initiate Expansion

Day 14-30: Dynabead Removal

Day 26-40: Cryopreservation
Enrichment of CD8+ T_{CM}

Day 2: CliniMACs
1) CD45RA/CD14/CD4 Depletion
2) CD62L Positive Selection
Development of T_{CM} Derived CD19CAR+ Cells
(Qualification Runs)

*HD 106 and 108 were from Lymphoma donors

Wang et al. J Immunother 2012
Freshly thawed qualification run T cell products were stained with the IOTest® Beta Mark TCR Vβ Repertoire Kit.
• Relapsed B Cell Lymphoma: Induction failure, recurrence of large cell, mantle cell lymphoma

• Poor prognosis with transplant

• Infuse cells on day +2 after transplant

• Lymphodepletion, homeostatic expansion

• Engraft cells as a component of the reconstituted immune system
Phase I/II study of cellular immunotherapy using central memory-enriched CD8+ T cells lentivirally transduced to express a CD19CAR following HSCT for patients with high risk intermediate grade B lineage NHL.

Enrollment: Relapsed B Cell Lymphoma (recurrent large cell & mantle cell lymphoma); Poor prognosis with auto-transplant.

Dose Schedule

<table>
<thead>
<tr>
<th>Starting Dose</th>
<th>Dose 1</th>
<th>Dose 2</th>
<th>Dose 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>50M</td>
<td>100M</td>
<td>500M</td>
<td>1000M</td>
</tr>
</tbody>
</table>

Infuse cells on day +2/+3 after HSCT
- Lymphopenic environment for homeostatic expansion
- Engraft cells as a component of the reconstituted immune system
FDA limit to one patient at a time in groups of 3 for each cell dose escalation; Starting dose = 5×10^7

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Age</th>
<th>Sex</th>
<th>Diagnosis</th>
<th>Prior Therapy</th>
<th>Salvage Prior to Leuk</th>
<th>Leukapheresis Date</th>
<th>Salvage Post Leuk</th>
<th>Disease Status at Time of HSCT</th>
<th>HSCT Date</th>
<th>T Cell Infusion Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN 043</td>
<td>68</td>
<td>F</td>
<td>diffuse large B-cell lymphoma, Relapsed 10/2011 - mass on right upper back, as well as possibly the uterus</td>
<td>6 cycles R-CHOP including CNS prophylaxis x 2 with high-dose MTX as an inpatient</td>
<td>No</td>
<td>10/20/11</td>
<td>2 cycles R-ICE</td>
<td>2nd Remission</td>
<td>1/16/12</td>
<td>1/18/12</td>
</tr>
<tr>
<td>UPN 047</td>
<td>74</td>
<td>M</td>
<td>diffuse large B-cell lymphoma, Induction failure 03/2012 – mass in abdomen</td>
<td>6 cycles of R-CHOP</td>
<td>2 cycles of R-ICE</td>
<td>3/29/12</td>
<td>No</td>
<td>Partial Remission</td>
<td>6/5/12</td>
<td>6/7/12</td>
</tr>
<tr>
<td>UPN 048</td>
<td>49</td>
<td>F</td>
<td>diffuse large B-cell lymphoma, Relapsed 03/2012 – mass in thyroid</td>
<td>6 cycles of R-ICE</td>
<td>No</td>
<td>5/17/12</td>
<td>2 cycles R-ICE</td>
<td>2nd Remission</td>
<td>9/21/12</td>
<td>9/24/12</td>
</tr>
</tbody>
</table>
IRB 09174/BB-IND 14645: First Three Clinical Products

T Cell Product Expansion:

CD19CAR Expression:

CD19-Specific Cytolytic Activity of T Cell Products:
Impact of CD19CAR+ T Cell Infusion on HSCT Engraftment

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>HSCT Date (Day 0)</th>
<th>T Cell Infusion Date (Day +2/+3)</th>
<th>ANC > 500</th>
<th>Platelets >20K</th>
</tr>
</thead>
<tbody>
<tr>
<td>UPN 043</td>
<td>1/16/12</td>
<td>1/18/12</td>
<td>Day +10</td>
<td>Day +15</td>
</tr>
<tr>
<td>UPN 047</td>
<td>6/5/12</td>
<td>6/7/12</td>
<td>Day +12</td>
<td>Day +18</td>
</tr>
<tr>
<td>UPN 048</td>
<td>9/21/12</td>
<td>9/24/12</td>
<td>Day +11</td>
<td>Day +16</td>
</tr>
</tbody>
</table>

No Infusional Toxicities
Serum Cytokine Levels Following CD19CAR+ T cell Infusion in UPN 043

** TNF below level of detection for all points**
Serum Cytokine Levels Following CD19CAR+ T cell Infusion in UPN 043

Day after UCPIN 043 Infusion

Rash

IFN-γ (pg/ml)

Day after UCPIN 043 Infusion

0 1 2 14 15 21 28 64 (PB)

-12 (pre-HCT cond) 0 (pre-T cell)

City of Hope
** Preliminary qPCR data confirms CD19CAR+ T cell persistence:**

<table>
<thead>
<tr>
<th>UPN043 PBMC</th>
<th>gDNA (ng)</th>
<th>WPRE copy#</th>
<th>WPRE Copy# /100ug gDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day 23</td>
<td>200</td>
<td>2.398</td>
<td>1210</td>
</tr>
<tr>
<td>Day 28</td>
<td>200</td>
<td>2.534</td>
<td>1267</td>
</tr>
<tr>
<td>Day 64</td>
<td>200</td>
<td>1.172</td>
<td>586</td>
</tr>
</tbody>
</table>

** anti-CD19R-CAR antibody kindly provided by Dr. Laurence Cooper, MD Anderson Cancer Center, Houston, TX
CD19+ B Cell Aplasia in Blood (PBMC) of UPN043

<table>
<thead>
<tr>
<th>Time</th>
<th>CD19-PE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre</td>
<td>7.35%</td>
</tr>
<tr>
<td>Day 28</td>
<td>0.00%</td>
</tr>
<tr>
<td>Day 64</td>
<td>0.01%</td>
</tr>
<tr>
<td>Day 96</td>
<td>0.00%</td>
</tr>
<tr>
<td>Day 118</td>
<td>0.01%</td>
</tr>
</tbody>
</table>
Serum Rituxan Levels in UPN 043

[Graph showing the decrease in serum Rituxan levels over time after CAR+ T cells i.v.]
Clinical Research Plan

• Complete 1st cohort at 5×10^7 CD19CAR\(^+\) CD8\(^+\) T_{CM}-derived cells
 – Amendment to normalize for CAR\(^+\) recently approved by FDA

• Continue dose escalation with 1×10^8 CD19CAR\(^+\) CD8\(^+\) T_{CM}-derived cells

• Work with FDA to liberalize accrual design

• Repeat 1×10^8 dose with CAR\(^+\) Bulk T_{CM}-derived cells
 – i.e., remove CD4-depletion step in T_{CM} selection strategy

• Initiate IND with second generation, costimulatory CAR (CD19R:CD28:ζ)
Acknowledgments

T Cell Therapeutics Research Laboratory
- Stephen Forman, MD
- Brenda Aguilar
- Lara Ausubel, PhD
- William Bretzlaff
- Christine Brown, PhD
- Brenda Chang
- Wen-chung Chang
- Desiree Daniels
- Blake Friedman
- Araceli Hamlett
- Lauren Hoffman
- Hao Hong, PhD
- Mahesh Jonnalagadda, PhD
- Vaidehi Mahadev
- Armen Mardiros
- Julie Ostberg, PhD
- Renate Starr
- Leonor Velasco
- Jamie Wagner
- Xiuli Wang, MD PhD
- Lihong Weng, MD
- Winnie Wong

COH Collaborators
- Leslie Popplewell, MD
- Bernie Pulone, RN
- Michelle Mott, RN
- Joel Conrad, MS
- Larry Couture, PhD
- Catherine Matsumoto
- Yasmine Shad
- Suzette Blanchard, PhD
- Simon Lacey, PhD

Support: Lymphoma Research Foundation; NCI Lymphoma SPORE; The Nesvig Lymphoma Research Fund; The Marcus Foundation; The Tim Lindenfelser Lymphoma Research Fund

Michael Jensen, MD
Seattle Children’s Research Institute

Stanley Riddell, MD & Carolina Berger, PhD
Fred Hutchinson Cancer Research Center
CD19+ B Cells in the Bone Marrow of UPN043

Majority of BM CD19+ cells are CD10+ Pro-B and Pre-B cells

CD19+CD10- cells are mature B cells

 Majority of BM CD19+ cells are CD10+ Pro-B and Pre-B cells
CD19-Targeted Clinical Trials Using CAR T cells

<table>
<thead>
<tr>
<th>Center</th>
<th>Disease</th>
<th>CAR endodomain</th>
<th>Vector to express CAR</th>
<th>Conditioning regimen</th>
<th>Target</th>
<th>Status</th>
<th>ClinicalTrials.gov NCT no.</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSKCC</td>
<td>CLL-refractory</td>
<td>ζ/28</td>
<td>RV</td>
<td>None vs. cyclophosphamide</td>
<td>CD3-selected</td>
<td>Open 6 treated</td>
<td>NCT00466531</td>
</tr>
<tr>
<td>MSKCC</td>
<td>B ALL-relapsed</td>
<td>ζ/28</td>
<td>RV</td>
<td>Cyclophosphamide</td>
<td>CD3-selected</td>
<td>Open 1 treated</td>
<td>NCT01044069</td>
</tr>
<tr>
<td>BCM</td>
<td>B NHL and CLL</td>
<td>ζ/28 vs. ζ</td>
<td>RV</td>
<td>None</td>
<td>PBMCs (OKT3 and IL-2)</td>
<td>Open 5 treated: 4 DLBCL 1 B-CLL</td>
<td>NCT00586391</td>
</tr>
<tr>
<td>BCM</td>
<td>B NHL and CLL</td>
<td>ζ/28 vs. ζ-EBV</td>
<td>RV</td>
<td>None</td>
<td>PBMCs and EBV CTLs</td>
<td>2 treated</td>
<td>NCT00608270</td>
</tr>
<tr>
<td>BCM</td>
<td>B ALL, S/P HSCT</td>
<td>ζ/28</td>
<td>RV</td>
<td>+30 Days after allo-HSCT</td>
<td>Multivirus CTL</td>
<td>Open</td>
<td>NCT00709033</td>
</tr>
<tr>
<td>NCI</td>
<td>Lymphoma, CLL</td>
<td>ζ/28</td>
<td>RV</td>
<td>Fludarabine and cyclophosphamide</td>
<td>PBMCs (anti-CD3 + REP)</td>
<td>Open 4 treated</td>
<td>NCT00924326</td>
</tr>
<tr>
<td>U Penn</td>
<td>Refractory B</td>
<td>ζ/41BB vs. ζ</td>
<td>LV</td>
<td>Variable</td>
<td>Auto PBMCs (CD3/CD28 beads)</td>
<td>To open</td>
<td>NCT00891215</td>
</tr>
<tr>
<td>U Penn</td>
<td>leukemia/lymphoma</td>
<td>ζ/41BB</td>
<td>LV</td>
<td>Variable</td>
<td>Allo DLI</td>
<td>To open</td>
<td></td>
</tr>
<tr>
<td>MDACC</td>
<td>B-NHL, S/P autologous HSCT</td>
<td>ζ/CD28</td>
<td>Electroporation/SB plasmids</td>
<td>BEAM-R</td>
<td>Auto PBMCs (± IL-2)</td>
<td>To open</td>
<td>NCT00968760</td>
</tr>
<tr>
<td>MDACC</td>
<td>B-lineage malignancy, S/P allogeneic HSCT</td>
<td>ζ/CD28</td>
<td>Electroporation/SB plasmids</td>
<td>Conditioning regimen for HSCT</td>
<td>Allo PBMCs or umbilical cord blood</td>
<td>To open</td>
<td></td>
</tr>
<tr>
<td>COH</td>
<td>Recurrent LCL-MCL, S/P autologous HSCT</td>
<td>ζ</td>
<td>Plasmid</td>
<td>Fludarabine or +28 days S/P HSCT</td>
<td>PBMCs</td>
<td>Closed 3 treated</td>
<td>NCT00182650</td>
</tr>
<tr>
<td>COH/FHCRC</td>
<td></td>
<td>ζ</td>
<td>LV</td>
<td>Tcm: CD8+/CD4 / CD45RA-/CD62+</td>
<td></td>
<td>To open</td>
<td>NCT01318317</td>
</tr>
</tbody>
</table>

+2 Days after auto-HSCT