Investigating the differential response to immunotherapy of orthotopic tumors compared to subcutaneous tumors

Michael Kershaw
Peter MacCallum Cancer Center, Melbourne, Australia
Subcutaneous Renca tumors respond well to Trimab when compared to kidney tumors.

Renca (Ch⁺/Luc⁺)

Trimab
DR5
CD40
CD137

S.C
I.K

Monitor

D0 D11 - 20D100

Percent survival

Days since tumor injection

SC: 86%
IK: 14%

1 experiment representative of 3
No differences in tumor growth rate between SC and IK

- **SC tumors**
 - TrimAb
 - Control

- **IK tumors**
 - TrimAb
 - Control

1 experiment representative of 3
AIM: Determine the reasons behind the differential responses to immunotherapy of tumors in different locations

Immune related differences:
cells and molecules of the tumor microenvironment before treatment

Differences in intrinsic tumor qualities:
resistance to apoptosis, MHC expression, morphological/structural differences
Cytometry gating for immune cells in tumors

Before treatment (D12 after tumor cell injection)

Gated on viability

- **CherryNeg**
- **TCRb Neg**

- **DCs**
- **B cells**

- **macrophages**
- **neutrophils**

- **CD8**
- **Treg**
No differences in frequency of immune cells in kidney tumors compared to subcutaneous tumors

Neutrophils
- TCRβ/Ly6G+)/CD11b+

B cells
- TCRβ+/CD19+

Macrophages
- TCRβ+/F4/80+/CD11b+

DCs
- TCRβ+/CD11c+

CD4 T cells
- TCRβ+/CD4+

CD8 T cells
- TCRβ+/CD8+

TReg
- TCRβ+CD8+/CD25+/FR4high

4 independent experiments pooled
Differences in macrophage profile between SC/IK tumors

Macrophages

% of total cells

0 5 10 15

sc ik

Graphs show the distribution of CD11b and F4/80 in SC and IK tumors.

CD11b\text{int} F4/80\text{hi}

CD11b\text{hi} F4/80\text{low}

Bar graphs depict the percentage of total cells in SC and IK tumors.

3 independent experiments pooled
F4/80hiCD11bint macrophages express FoxP3 and the mannose receptor (CD206).
M2 macrophage markers predominate in kidney tumors

SC tumors

↑

IK tumors

Factors for the M2 switch
→ LIF

Growth factors
→ GM-CSF
→ M-CSF

 Trafficking
→ CCL2, CCL1
→ CX3CL1, CCL6

Activity
→ Arginase
→ IL-10

Mantovani A et al, 2002
CD4⁺ T cell depletion triggers regression of SC tumors but not IK tumors

Image of a graph showing percent survival over days since tumor injection for SC and IK tumors with and without T reg depletion.

- **S.C:** SC control 84% (n=13)
- **IK:** IK control 0% (n=10)

T reg depletion (D11,12,13)

1 experiment representative of 3
Immune response after CD4+ depletion may be systemic

Depleting anti-CD4 antibody

Tumor monitoring

Survival

D 0 D 11-12-13 ---D100

S.C I.K I.K+S.C S.C+S.C

T reg depletion (D11,12,13)

SC α-CD4

SC+SC α-CD4

SC+IK α-CD4

Percent survival

days

N=14-20

3 independent experiments pooled
Kidney tumor inhibits rejection of subcutaneous tumor

SC alone

N=6

SC T Reg D

SC Control

SC + SC

N=6

T Reg D right

T Reg left

Control right

Control left

SC + IK

N=8

SC+IK TReg D

SC+IK Control

Days since tumor injected

Anti-CD4 days 11, 12 and 13

1 experiment representative of 3
Kidney tumors do not respond as well as subcutaneous tumors when pieces are transplanted under the skin.

- **Renca**
 - S.C: harvested
 - I.K: reinjected SC

- **Days after tumor transplant**
 - 0
 - 15
 - 11 days later

- **Percent survival**
 - sc → sc α-CD4
 - ik → sc α-CD4

- **One experiment (n=5)**
AIM: Determine the reasons for the differential responses to immunotherapy of tumors in different locations

Immune related differences:
cells and molecules of the tumor microenvironment

Differences in intrinsic tumor qualities:
resistance to apoptosis, MHC expression,
morphological/structural differences

-What do the tumors look like before treatment?
SC and IK tumors are same size / weight before treatment

D10 before treatment

IK tumors

SC tumors

1 experiment representative of 3
Phenotype of tumors: Higher level of MHC I in SC tumor and higher level of DR5 and expression of Fas L in IK tumors.
Kidney tumors are more highly vascularized

(5 tumors, 10 fields/tumor)
No difference in tumor vessel permeability

Evans blue IV injections 26 min tumors taken Elution in formamide 24 h

D0

S.C

I.K

Renca Ch⁺ luc⁺ cells

Evans blue (ng/mg tissue)

<table>
<thead>
<tr>
<th></th>
<th>Kidney</th>
<th>Subcutaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>no dye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ dye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>no dye</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ dye</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

N = 5 tumors, representative of 3 experiments
Summary

- Subcutaneous tumors eradicated by Trimab or T_{reg} depletion but kidney tumors are not eradicated.
- M2 macrophage microenvironment in kidney tumors.
- Higher frequency of $\text{F4/80}^{\text{hi}}\text{CD11b}^{\text{int}}\text{FoxP3}^+$ macrophages in kidney tumors.
- Immunosuppression may be systemic.
- More blood vessels and higher MHCI in subcutaneous tumors.
Thanks

Peter MacCallum Cancer Center

- **Immunology program**
 - Christel Devaud
 - Jenny Westwood
 - Phil Darcy
 - Mark Smyth
 - Michele Teng
 - Liza John
 - Jacqueline Flynn
 - Connie Duong
 - Carmen Yong

- **Angiogenesis lab**
 - Sophie Paquet-Fifield
 - Marc Achen

- **FACS facility**

- **Peter Mac animal facility**

- **Peter Mac molecular genomics facility**

- **Histology lab**

Funding:

Cancer Council of Victoria
National Health and Medical Research Council