#### Repetitive DNA Vaccination Elicits PAP Antigen-Specific T-Cell Immune Responses in Patients with Castration-Resistant Prostate Cancer



Douglas McNeel, MD PhD Associate Professor of Medicine University of Wisconsin - Madison Carbone Cancer Center

#### Disclosures

**Dendreon Corporation – consultant** 

Intellectual property – WARF

### Outline

- Background
  - Prostate cancer immunotherapy
  - Previous experience DNA vaccine encoding prostatic acid phosphatase (PAP)
- Pilot Clinical Trial
  - Evaluation in patients with non-metastatic prostate cancer
  - Immune monitoring to answer questions of vaccine schedule

#### Prostate Cancer

- Most commonly diagnosed cancer in the United States
- Second leading cause of cancer-related death in men
- Approximately 1/3 of patients have recurrent disease after "definitive" local therapy
- 240,890 projected new cases in 2011
- 33,720 projected deaths in 2011

## Immunotherapy for Prostate Cancer

- Sipuleucel-T approved by FDA in 2010 first approved anti-tumor vaccine in U.S.
- Approved on the basis of improved overall survival
- Time to progression endpoint in previous trial not met
- Similar findings with PSA-TRICOM vaccine approach





Small (2006) J Clin Onc 24:3089

Kantoff (2010) J Clin Onc 28:1099

# Questions Regarding Immunotherapy for Prostate Cancer

Why was there no clear association between TTP and OS? Or T-cell immune response and OS or TTP?



- Other preclinical studies and anti-tumor vaccine trials have suggested that anti-tumor vaccines might "take time to work" and/or be most effective in the minimal-residual-disease setting.
- Is it possible that the advanced stage of prostate cancer that has been most evaluated is not optimal to detect time-toprogression and immunological readouts?

#### Prostate Cancer



PSA = prostate-specific antigen CR = castrate-resistant Modified from: Scher HI, et al. *Urology*. 2000; 55:323-327.

#### Prostate Cancer



# Prostatic Acid Phosphatase – Vaccine Target Antigen

- Expression essentially restricted to prostate tissue in humans
- Permits evaluation of serum PSA as an independent assessment of response in human trials
- Previous experience targeting this antigen in rodent models and human clinical trials:
  - Vaccinia, pulsed dendritic cell (Fong, Stanford)
  - Antigen-presenting cell vaccine (Dendreon corp.)

### Antigen-Specific DNA Vaccines

Advantages:

- Simpler, less costly, manufacturing and storage
- Non-autologous
- Not MHC-restricted
- No foreign viral antigens
  - Safety
  - No need for heterologous immunization approach
- Validated in non-human (companion dog) trials

#### Disadvantage:

• Less immunologically potent

# Phase I Trial – DNA Vaccine Encoding PAP Study Design

#### Patients with stage D0 prostate cancer



McNeel, JCO '09 27:4047

# Prostate Cancer – Stage D0 Trial Lessons Learned

- PAP-specific T-cell immune responses elicited
  - CD8+ T cells IFNγ-secreting
  - CD4+ and CD8+ T-cell proliferation
  - HLA-A2-restricted cytolytic activity
  - Immune responses elicited irrespective of dose
- No PAP-specific antibody responses elicited
- No significant adverse events

# Prostate Cancer – Stage D0 Trial Lessons Learned (cont)

Immune responses detectable after immunization appeared to require several vaccinations





Becker '10 JIT 33:639

# Prostate Cancer – Stage D0 Trial Lessons Learned (cont)

Immune responses were "boostable"





Becker '10 JIT 33:639

# Prostate Cancer – Stage D0 Trial Lessons Learned (cont)

Detection of PAP-specific IFN $\gamma$  responses at least twice in 1 year of follow up (\*) associated with favorable change in PSA doubling time (*P*=0.001)





- Multiple immunizations may be necessary to elicit responses in some individuals
- Development of long-term, durable memory immune responses may be associated with long-term stable disease
- Periodic booster immunizations may be necessary to maintain Th1-type response

### Objectives / Endpoints

Primary Clinical Endpoint:

To determine the safety of multiple serial immunizations in a castrate-resistant, non-metastatic population

Primary Immunological Endpoints:

- Determine whether long-term, memory PAP-specific T cells can be elicited
- Determine an optimal schedule of immunization to maintain effector/memory T-cell response

#### Secondary Endpoints:

- Determine if immunization associated with prolonged PSA doubling time
- 1-year metastasis-free survival

#### Trial Schema



- PAP DNA vaccine 100 µg + 200 µg rhGM-CSF (adjuvant) intradermally
- Tetanus immunization given prior
- Patients remain on study until:
  - Radiographic progression
  - Toxicity
  - Personal choice to discontinue
  - 2 years or maximum of 24 immunizations

#### Study Population – Entry Criteria

- Stage D0.5 prostate cancer, defined as:
  - Castrate-resistant
  - Rising serum PSA
  - No evidence of metastases by CT or bone scan
- All (minimum of 4) serum PSA values available over a 3-6 month period, last value > 2 ng/mL, all from same clinical laboratory – for pretx PSA DT
- ECOG PS < 2
- Normal hematological, renal, liver function
- Not on immunosuppressive therapy

#### Trial Conduct

Accrual: 14 patients as of October 2011, of whom 11 have completed 1 year

8 have come off study
2 for PD (6, 15 months)
1 for choice – rising PSA (9 months)
1 for grade 3 allergic reaction (15 months)
4 completed study
3 received 24 immunizations
1 on study for 2 years

9 of 11 have been / were on study  $\geq$  1 year 6 remain on study

### Demographics

| Age, median:      | 73.5 years (range 47-86)      |  |
|-------------------|-------------------------------|--|
| Prior treatment:  |                               |  |
| Prostatectomy     | 7 (50%)                       |  |
| Radiation therapy |                               |  |
| Primary treatment | 3 (21%)                       |  |
| Salvage treatment | 5 (36%)                       |  |
| Gleason Grade     |                               |  |
| <7                | 3 (21%)                       |  |
| 7                 | 6 (43%)                       |  |
| 8                 | 1 (7%)                        |  |
| 9                 | 4 (29%)                       |  |
| Pre-treatment     |                               |  |
| PSA, median:      | 5.35 ng/mL (range 2.3 – 54.4) |  |

2.8 months (range 1.36 – 5.48)

PSA doubling time, median:

# Adverse Events

|                                                                 | Grade 2 | Grade 3 | Grade 4 |
|-----------------------------------------------------------------|---------|---------|---------|
| Allergic / Hypersensitivity                                     | 2       | 1       |         |
| Dermatologic<br>Injection site reactions<br>Rash / desquamation | 1<br>1  |         |         |
| Laboratory / metabolic<br>Elevated creatinine                   | 1       |         |         |

#### Immune Analysis

Real-Time Immune monitoring:

- PAP-specific CD4+ and CD8+ T-cell proliferation (dye dilution to determine precursor frequency)
- PAP-specific IFNγ release (ELISPOT)
- PAP-specific granzyme B release (ELISPOT)

"Response" defined as statistically significant compared with media-only control, and at least 3x baseline value. Baseline cryopreserved sample evaluated with each timepoint

#### Other measures:

- Memory phenotype of antigen-specific proliferating cells
- Cytokine expression of proliferating cells
- Tetramer analysis of HLA-A2+ individuals
- PAP-specific antibody (IgG) responses

#### Immune Analysis – T-Cell Proliferation



Number of Cells Analyzed: 19140 Reduced Chi-Square: 23.359

### **Example Real-Time Immune Analysis** Immune Responder

0

-100

0

100

500



400

-50

-100

-150

0

100

200

Days from beginning immunization

300



\*

Days from beginning immunization

300

200

500

400

# Baseline Immune Analysis Reproducibility over Time



# PSA Monitoring with Immunization Fixed Schedule





### **PSA** Monitoring with Immunization Variable Schedule with Monitoring



Days since beginning immunization

#### Changes in PSA Doubling Time Associated with Long-Term Th1-Type Immunity



### Summary and Preliminary Trial Conclusions

- Multiple repetitive immunizations appears safe
- Long natural disease history appropriate for evaluating long-term effects of anti-tumor vaccines
- Different patterns of immune "response"
- To date, identification of optimal schedule challenging due to delayed immune responses
- IFNγ-secreting responses identified at multiple times after immunization most associated with favorable changes in PSA doubling time

# Unanswered Questions and Future Directions

- Does vaccination (and/or change in PSA doubling time occurring after vaccination) affect time to disease progression?
- Does establishment of long-term immune response confer benefit in terms of time to disease progression?
- What differences exist in some patients pretreatment that make them not "immunizable"?

### **Ongoing Randomized Phase II Trial**

#### Primary Objective:

To evaluate the 2-year metastasis-free survival of patients with non-castrate, non-metastatic prostate cancer (clinical stage D0) treated with a DNA vaccine encoding PAP, with GM-CSF as an adjuvant, versus GM-CSF only.



Patients with PSA doubling time < 12 months

2-center trial: UWCCC and UCSF (Larry Fong, PI)

# Acknowledgements

#### <u>Lab</u>:

- Jordan Becker
- James Davies
- Ed Dunphy
- Tom Frye
- Laura Johnson, PhD
- Joshua Lang, MD MS
- Matthew Morse, PhD
- Brian Olson, PhD
- Heath Smith
- Stephanie Thiede

#### Funding:

NIH/NCI: K23 RR16489, R21 CA132267 DOD PCRP: W81XWH-05-1-0404, W81XWH-08-1-0074 UW Carbone Cancer Center

#### Clinical Research Team:

- Justine Bruce, MD
- Jeremy Cetnar, MD
- Jens Eickhoff, PhD
- Dottie Horvath, RN
- Glenn Liu, MD
- Mary Jane Staab, RN
- Jane Strauss, RN
- George Wilding, MD
- Mulusew Yayehyirad, RN

#### Collaborators:

- William Burlingham, PhD
- Ewa Jankowska-Gan, PhD
- Larry Fong, MD