DC vaccination concurrently reduces Tregs and enhances activated CTLs in tumor biopsies from immunoresponsive patients with advanced melanoma

- 27 patients treated;
- 12 PD, 2 CR, 8 PR, 5 SD (according to irRC);
- OR 37.03%;
- Clinical Benefit: 55.5%.

- 27 patients treated;
- 12 PD, 2 CR, 8 PR, 5 SD (according to irRC);
- OR 37.03%;
- Clinical Benefit: 55.5%.

All clinical responders were also immunological responders (positive DTH to KLH and autologous tumor lysate and/or positive ELISPOT).
Survival

Log rank = 7.26, P = 0.007

<table>
<thead>
<tr>
<th></th>
<th>Number of patients</th>
<th>Number of events (%)</th>
<th>Median survival (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTH negative</td>
<td>8</td>
<td>7 (87.5)</td>
<td>4.8 (3.9–11.9)</td>
</tr>
<tr>
<td>DTH positive</td>
<td>19</td>
<td>12 (63.2)</td>
<td>22.9 (13.4–61.3)</td>
</tr>
</tbody>
</table>

Number of patients at risk

<table>
<thead>
<tr>
<th></th>
<th>Months</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTH Neg</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DTH Pos</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
.... why do immunoresponsive patients fail under DC vaccination??
... why do immunoresponsive patients fails under DC vaccination??

Answer 1

Vaccine-induced immunological pressure select for lower immunogenic tumor cells variants (defects in Ag processing/presentation).
.... why do immunoresponsive patients fail under DC vaccination??

Answer 1

Vaccine-induced immunological pressure select for lower immunogenic tumor cells variants (defects in Ag processing/presentation).

Answer 2

Vaccine-induced immunological pressure might select for tumor cells variants resistant to immune effector-induced death.
.... why do immunoresponsive patients fails under DC vaccination??

Answer 1

Vaccine-induced immunological pressure select for lower immunogenic tumor cells variants (defects in Ag processing/presentation).

Answer 2

Vaccine-induced immunological pressure might select for tumor cells variants resistant to immune effector-induced death.

Question

Increased levels of FOXP3+ regulatory T cells have been observed in vaccine injection as well as in DTH sites after repeated administration of peptide or DC vaccines: is it true also for tumor sites?
Sixteen melanoma biopsies taken by 8 patients before and after at least 5 DC vaccine courses (all immunological responders)
Sixteen melanoma biopsies taken by 8 patients before and after at least 5 DC vaccine courses (all immunological responders)

Immunohistochemistry for:

- CD3
- CD8
- Granzyme B
- FOXP3
Digital camera acquisition

Computer-assisted counting

ImageJ
Image Processing and Analysis in Java

RSB
Research Services Branch
National Institute of Mental Health
National Institute of Neurological Disorders and Stroke
FOXP3+ TILs (nr/100 tumor cells)
p=0.031

Legend:
- GD
- BF
- MJL
- CK
- AL
- BI
- CE
- SL

Prevax vs. Postvax
<table>
<thead>
<tr>
<th>Protein</th>
<th>Prevax</th>
<th>Postvax</th>
<th>Postvax “immunoescaped”</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOXP3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gp100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tyr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MART1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAGE3A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CONCLUSIONS

- In immunoresponsive advanced melanoma patients DC vaccination induces strong CTL responses at tumor sites.
CONCLUSIONS

-In immunoresponsive advanced melanoma patients DC vaccination induces strong CTL responses at tumor sites.

- DC vaccination might “relief” immunosuppression in tumor microenvironment by reducing FOXP3+ regulatory TILs.
CONCLUSIONS

- In immunoresponsive advanced melanoma patients DC vaccination induces strong CTL responses at tumor sites.
- DC vaccination might “relief” immunosuppression in tumor microenvironment by reducing FOXP3+ regulatory TILs.
- Reduced immunosuppression is likely functionally relevant (higher cytotoxic activation of CD8+ CTLs).
CONCLUSIONS

- In immunoresponsive advanced melanoma patients DC vaccination induces strong CTL responses at tumor sites.
- DC vaccination might “relief” immunosuppression in tumor microenvironment by reducing FOXP3+ regulatory TILs.
- Reduced immunosuppression is likely functionally relevant (higher cytotoxic activation of CD8+ CTLs).
- Lower levels of FOXP3+ TILs induced by vaccination are maintained also along long-term treatment.
CONCLUSIONS

- In immunoresponsive advanced melanoma patients DC vaccination induces strong CTL responses at tumor sites.

- DC vaccination might “relief” immunosuppression in tumor microenvironment by reducing FOXP3+ regulatory TILs.

- Reduced immunosuppression is likely functionally relevant (higher cytotoxic activation of CD8+ CTLs).

- Lower levels of FOXP3+ TILs induced by vaccination are maintained also along long-term treatment.

- Immune escape upon vaccine-induced immune response in our setting may be due not only to reduced immune recognition (lower Ag processing/presentation) but also to changes in the pattern of Ags expressed by tumor cells which may occur along vaccination.
Immunotherapy and Somatic Cell Therapy Lab IRST Meldola

Ruggero Ridolfi Angela Riccobon Laura Fiammenghi
Massimo Guidoboni Massimiliano Petrini Valentina Ancarani
Laura Ridolfi Elena Pancisi Annamaria Granato
Stefania Nicoletti

Dept of Pathology, Morgagni-Pierantoni Hospital
Luigi Serra

Dept of Oncological Surgery, Morgagni-Pierantoni Hospital
Giorgio Maria Verdecchia Massimo Framarini Francesca Taucer

Dept of Pathology, University of Ferrara
Giovanni Lanza Roberta Gafà
DISCLOSURE INFORMATION

Massimo Guidoboni, MD

The following relationships exist related to this presentation:

No Relationships to Disclose