SITC 26th Annual Meeting, Nov 1-6, 2011
North Bethesda, MD

IDO1 activity correlates with HGF levels and immune system impairment in multiple myeloma

Sergio Rutella, MD PhD
Department of Hematology
Catholic Univ. Medical School, Rome, Italy

Current affiliation: Department of Pediatric Hematology/Oncology
IRCCS Bambino Gesù Children’s Hospital
Rome, Italy
Presenter disclosure information

Sergio Rutella

The following relationships exist related to this presentation:

No relationships to disclose
IDO1: Background

- Constitutively expressed by tumor cells and/or tumor environmental cells
- Induced by IFN-γ, a prototypical pro-inflammatory mediator
- Mediates tumoral immune escape
- Confers an unfavorable prognosis to certain tumor types (i.e., acute myeloid leukemia, ovarian cancer)
- Can be targeted with selective inhibitors (i.e., 1-methyl-tryptophan; INCB024360)

IDO1-driven TRP catabolism

Serotonin

Protein ← L-TRP

IDO1

N-formyl-kynurenine

Kynurenine formamidase

KYN

Bloodstream

3-HK

3-HAA

Quinolinic acid

Effects on the immune system

+ > GCN2 stress kinase

- < mTOR

T-cell anergy

> Treg cells

< NK proliferation

Th1 apoptosis

Hepatocyte growth factor (HGF) induces *IDO1* in human DC

(a) 672 significant probe sets up-regulated by HGF (ANOVA)

(b) 29 probe sets up-regulated by HGF (Tukey post-hoc test)

(c) GM4 and HGF

(d) T-cell proliferation index

Rutella S et al, Blood 2006a
Rutella S et al, Blood 2006b
The immune defect in MM

- Infections are the leading cause of death
- DC are dysfunctional \((\text{IL-10}^+ \text{IL-12}^- \text{CD80/86}_{\text{low}})\)
- MM cells express CD28 and B7-coinhibitory molecules (PD-L1)
- Immune suppressive and angiogenic cytokines are increased \((\text{HGF, VEGF, IL-10, TGF-}\beta)\)
- Treg cells are abnormal, both quantitatively and qualitatively
- Sensitivity to the graft-versus-myeloma effect indicates that the immune system is crucial to control the disease

Study hypothesis

MM cells

IDO1

Trp → Kyn

Naïve T cell

Treg cells

Anti-myeloma CD8+ T cells

BMSC
Patients

- 34 consecutive patients with PC dyscrasia
 - 27 symptomatic MM
 - 4 SMM
 - 3 MGUS
- 26 (77%) at disease onset / relapse
- 23 (67%) were not taking any medication at time of sampling
- β_2-microglobulin averaged 3.1 mg/dl (range 1.4-33.0)
- M-component averaged 2.6 g/dl (range 0.9-7.6)
KYN are increased in MM patients

Median KYN in HC = 1.8 μM/L

IDO⁻ MM < 1.8 μM/L (8 pts, 23%)
IDO⁺ MM > 1.8 μM/L (26 pts, 77%)
IDO1 is constitutively expressed by PC

![Cell sorting diagram](image)

a) Pre-sort and Post-sort cell populations

b) Morphological image of MM cells

c) IDO1 mRNA expression levels before and after IFN-γ treatment

d) KYN/TRP ratio and β2-microglobulin levels in THP-1 and MM cells

- Pre-sort: CD138 -> CD38 > CD56 ->
- Post-sort: CD138 -> CD38 > CD56 ->

+ IFN-γ

<table>
<thead>
<tr>
<th>THP-1</th>
<th>MM</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDO1 mRNA (qPCR)</td>
<td>10^6</td>
</tr>
<tr>
<td>KYN/TRP ratio (μM/μM*100)</td>
<td>0.6406</td>
</tr>
</tbody>
</table>

β2-microglobulin (mg/dl)
MM BMSC do not constitutively express IDO1

![Graph showing KYN or tryptophan levels with bar charts for CM (t0), Ctr (t24h), and IFNγ (t24h). The levels are compared between Kyn and Tryptophan conditions.]

Legend:
- Red: Kyn
- Blue: Tryptophan

of exp = 4

b) Flow Cytometry Results:
- CD4:
 - Kyn: 1.1
 - Tryptophan: 2.7
- CD4+allo-Mo + BMSC supernatant:
 - Kyn: 46
 - Tryptophan: 8
- CD4+allo-Mo + BMSC supernatant + TRP (100 µM):
 - Kyn: 89.3
 - Tryptophan: 1.5
- CD4+allo-Mo + BMSC supernatant + TRP (100 µM):
 - Kyn: 86.2
 - Tryptophan: 2.0
IDO1 may expand Treg cells *in vivo*

By ANOVA
IDO1 induces Treg cells *in vitro*

MTLC with IDO+ PC

± D,L-1MT

Allogeneic CD4+

CD4+PC (1:3) +1MT (200 µM)

CD4+ + + + +

αCD3/CD28 Ab - + + +

MM-induced Tregs (1:1) - - + -

MM-induced Tregs (2:1) - - - +

% CD4+FoxP3+ Treg cells

a) # of exp = 4

CD4 +PC

+1MT

CFSE

CFSE dim

CFSE bright

CD4

CD4+PC (1:3)

CD4+PC (1:3)

+1MT (200 µM)

CFSE (MFI)

b) # of exp = 4

c)

of exp = 4
IDO1 restrains Th1/17 but not Th2 responses
The NY-ESO-1 CT antigen

- A tumor-specific antigen (not expressed in normal tissues) and potential target of the graft-versus-MM effect
- Detected in 10-60% of MM (and in 100% of MM with cytogenetic abnormalities)
- T cells reactive against NY-ESO-1 account for 0.2-0.6% of CD8⁺ T cells in MM patients and can be detected with tetramers / pentamers in HLA-A2⁺ subjects

IDO1 restrains MM-reactive T cells

a)

% A2/NY-ESO-1\(^+\)CD8\(^+\) T cells

- IDO\(^+\) HLA-A2.1\(^+\) MM
- IDO\(^-\) HLA-A2.1\(^+\) MM
- A2\(^{neg}\) MM

b)

- Pt#1
 - NY-ESO-1\(_{157-165}\)
 - Flu peptide\(_{58-66}\)
- Pt#2
 - NY-ESO-1\(_{157-165}\)
 - Flu peptide\(_{58-66}\)

n=14
n=6
n=6
IDO1 activity correlates with HGF

*By ANOVA
IDO1 in MM cell lines

a) Histograms showing IDO expression in MOLP-8, LP-1, and HuNS-1 cells.

b) Bar chart showing Kynurenine (µM) levels at T=24h, T=48h, T=72h for MOLP-8, LP-1, and HuNS-1 cells.

b) Graph showing HGF (ng/ml) levels at t=24h for A2780, LP-1, and MOLP-8 cells.

d) Western blot showing c-Met and GAPDH expression in MOLP-8 and LP-1 cells.
HGF induces IDO1 in HGF-sensitive MM cells

a) MOLP-8 (HGFlow)

b) LP-1 (HGFhigh)

c) IDO protein (KS)

- MOLP-8
 - t0
 - t24

- LP-1
 - t0
 - t24
Conclusions

• IDO1 is expressed in MM
• IDO1 activity correlates with HGF release
• Bona fide Treg cells are increased and inversely correlate with myeloma-reactive T cells
• In vitro, IDO1 skews T-cell function towards a Th2/Treg cytokine secretion profile
• The HGF/IDO1 axis is a potential target of immune intervention in MM and other HGF-secreting tumors
Acknowledgments

Lab Members, Rome
Giuseppina Bonanno
Daniela Natale
Andrea Mariotti
Annabella Procoli

Dept of Pediatric Hematology/Oncology,
IRCCS OPBG, Rome
Franco Locatelli

Myeloma Unit
University of Turin
Manuela Gambella
Alberto Rocci
Antonio Palumbo

Dept of Hematology,
S. Camillo Hospital, Rome
Ignazio Majolino

Dept of Hematology and Medical Oncology
University of Bologna
Antonio Curti
Roberto M. Lèmoli

Hemostasis Research Centre,
UCSC, Rome
Raimondo De Cristofaro

Financial support: