High-affinity allo-restricted TCR for adoptive T cell therapy: selection and characterization

Dolores J. Schendel
SITC, November 2011
The following relationships exist related to this presentation:

My center holds IP on methods to generate high avidity T cells and selected TCRs derived using these methods
DC priming of high avidity CD8$^+$ T cells

HLA-A2$^{\text{pos}}$ donor

HLA-A2 is an *endogenous* gene. High affinity TCRs are deleted to protect against autoimmunity.

HLA-A2$^{\text{neg}}$ donor

HLA-A2 is a *transgene*. Donor still has high affinity TCRs.
Advantages of DC priming strategy

HLA-A2neg donor

- optimal priming capacity of DC
- use any donor negative for selected MHC allele
- use any allogeneic class I or class II allele
- use any antigen available as cDNA
HLA-A2+ allo-restricted tyrosinase-specific CTL
Higher intensity multimer binding by allo-primed CTL

HLA-A2pos donor

HLA-A2neg donor

low intensity multimer binding

higher intensity multimer binding

0.39% MFI 3,963

0.43% MFI 17,110

auto-DC

endo A2

tyrosinase-RNA

HLA-A2 RNA

tyrosinase-RNA

tg A2

CD8
Distribution of self- and allo-restricted CTL clones

<table>
<thead>
<tr>
<th>reactivity</th>
<th>self-restricted (HLA-A2⁺ donors)</th>
<th>allo-restricted (HLA-A2⁻ donors)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no reactivity</td>
<td>21</td>
<td>8</td>
</tr>
<tr>
<td>allo-A2</td>
<td>0</td>
<td>27</td>
</tr>
<tr>
<td>A2-tyrosinase</td>
<td>17</td>
<td>16</td>
</tr>
<tr>
<td>total number</td>
<td>38</td>
<td>51</td>
</tr>
</tbody>
</table>

55% | 16% | 0% | 53% | 45% | 31% | 100% | 100%
Specific recognition of melanoma lines

![Graph showing IFN-γ levels in tumor cell lines with HLA-A2 self-restricted and HLA-A2 allo-restricted categories.](graph.png)

tumor cell lines
Allo-restricted clones show greater peptide sensitivity

- C115
- C58

Graphs:
- Self-restricted
- Allo-restricted

Horizontal axis: Tyr-peptide loaded T2 cells

Vertical axis: % relative lysis

Y-axis:
- 0
- 20
- 40
- 60
- 80
- 100

X-axis: [M]
- 10^{-11}
- 10^{-10}
- 10^{-9}
- 10^{-8}
- 10^{-7}
- 10^{-6}
- 10^{-5}

Legend:
- C115
- C58

Notes:
- Relative half-maximal lysis [M]
- Self-restricted
- Allo-restricted

Statistical Significance: *
Self- and allo-restricted CTL have identical specificities but different functional capacities.
Transgenic TCR expression in PBL

T cell clone → T cell culture in vitro → Expanded clonal T cells

TCR mRNA → TCR cDNA into retrovirus → Tg-TCR recipient cells
Transgenic TCR expression in recipient cells

Jurkat 76 unmod.
Jurkat 76 tgC115
Jurkat 76 tgC58
PBL unmod.
PBL TCR-C115
PBL TCR-C58

self-restricted
allo-restricted
Tumor-specific recognition by TCR-transgenic PBL

HelmholtzZentrum münchen
German Research Center for Environmental Health
Allo-TCR shows superior peptide sensitivity

Functional avidity

tyrosinase\textsubscript{369-377} pulsed T2 cells
Lessons learned from tyrosinase-specific T cells

- Allo-restricted CTL have superior peptide sensitivity
- Multimer binding does not necessarily correlate with peptide sensitivity and superior cell function
- PBL transduced with the allo-restricted TCR show superior functions
- DC priming can provide high affinity TCR for adoptive T cell therapy
Repertoire of allo-restricted TCR in development

Tyrosinase
Melan A
Survivin
HMMR
WT-1
NY-ESO-1 (non-HLA-A2 restricted)

Cancer-germline: 10 TAAs in progress
HLA-A2\(^+\) allo-restricted survivin-specific T cells
Ranking of tumor-associated antigens for vaccine development

- therapeutic function
- immunogenicity
- specificity
- oncogenicity
- expression level & positive cells
- stem cell expression
- nr. of patients with Ag positive cells
- nr. of epitopes
- cellular location of expression

Cheever MA et al., CCR 2009
HLA-A2 self-restricted and allo-restricted survivin-specific T cell lines
Screening of survivin-specific self-restricted and allo-restricted T cell clones

![Graph showing specific lysis]
No detection of self-restricted survivin-specific CTL

<table>
<thead>
<tr>
<th></th>
<th>A2⁺ (self-restricted)</th>
<th>A2⁻ (allo-restricted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no reactivity</td>
<td>46 100%</td>
<td>9 12%</td>
</tr>
<tr>
<td>alloreactive</td>
<td>0 0%</td>
<td>44 60%</td>
</tr>
<tr>
<td>survivin-reactive</td>
<td>0 0%</td>
<td>22 28%</td>
</tr>
<tr>
<td>total number</td>
<td>46 100%</td>
<td>74 100%</td>
</tr>
</tbody>
</table>
CTL display broad range of peptide sensitivities

peptide sensitivity of survivin$_{96-104}$-pulsed T2 cells
Transgenic TCR are well expressed on PBL

![Histograms showing TCR expression]

- PBL: 0%
- + TCR-A71: 72%
- + TCR-A66: 76%
- + TCR-A72: 78%
TCR-transgenic PBL kill survivin-positive tumor cells
Tg-TCR recognition is survivin-peptide dependent
HLA-A2\(^+\) PBL with tg-TCR undergo high apoptosis
Survivin-specific tg-TCR kill HLA-A2+ PBL
Activated PBL express high levels of survivin transcripts

![Image]

<table>
<thead>
<tr>
<th>target PBL</th>
<th>A2(^{-}) (PHA)</th>
<th>A2(^{-}) (CD3/CD28)</th>
<th>A2(^{+}) (unstimulated)</th>
<th>A2(^{+}) (PHA)</th>
<th>A2(^{+}) (CD3/CD28)</th>
</tr>
</thead>
<tbody>
<tr>
<td>survivin</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
<tr>
<td>(\beta_2m)</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
<td>_</td>
</tr>
</tbody>
</table>
HLA-A2+ CTL are killed by TCR-transgenic PBL

![Graph showing specific lysis (%) of CTL against different target cells: JB4 (A2-), A42 (A2+), Tyr-F8 (A2+), FaLe (A2+) with various conditions: PBL, + TCR-A71, + TCR-A66, + TCR-A72, + GFP.]

- **target CTL**
 - JB4
 - A42
 - Tyr-F8
 - FaLe

- **Western Blots**
 - Survivin
 - β2m
Lessons learned from survivin-specific TCR

- Self-restricted survivin-specific T cells were not found
- Allo-restricted survivin-specific T cells were frequent and some had very high peptide sensitivities
- PBL transduced with the allo-restricted TCR showed excellent and specific effector cell functions
- MHC-restricted fratricide eliminates survivin as a tg-TCR specificity and raises questions regarding its use as a vaccine antigen
Wider implications for MHC-restricted fratricide?

CD8-sorted

1. EGFR
2. MART-1/melan A
3. NY-ESO-1
4. Tyrosinase
5. WT-1
6. EphA2
7. PSA
8. FLT3
9. CASP-1
10. CYP1B1
11. PRAME
12. EPCAM
13. CA9
14. hTERT
15. RGS5
16. MUC-1
17. VEGF
18. p53
19. c-myc
20. HMMR
21. NPM1
22. Survivin
Acknowledgments

Institute of Molecular Immunology
Helmholtz-Zentrum München

Susanne Wilde
Bernhard Frankenberger
Slavoljub Milosevic
Stefanie Spranger
Maja Buerdek

Leiden University Medical Center
Department of Hematology

Mirjam Heemskerk

University of Tübingen

Stefan Stevanovic
Hans-Georg Rammensee

Institute of Immunology
Max-Delbrueck-Centre for Molecular Medicine, Berlin

Daniel Sommermeyer
Matthias Leisegang
Wolfgang Uckert
Thomas Blankenstein

Institute of Medical Microbiology,
Immunology and Hygiene,
Technical University Munich

Dirk H. Busch
Matthias Schiemann
Florian Anderl

Supported by grants of the HGF Alliance for Immunotherapy of Cancer and the German Research Foundation (SFB-TR36)