Vaccine sites as sinks and graveyards for tumor-specific T cells

Willem Overwijk, Ph.D.
MD Anderson Cancer Center
Center for Cancer Immunology Research
Houston, TX
Willem W. Overwijk, Ph.D.

The following relationships exist related to this presentation:

No Relationships to Disclose
gp100 peptide vaccine + IL-2 has activity in metastatic melanoma

Stage IV and locally advanced stage III melanoma patients

High-dose IL-2 +/- gp100 in IFA

<table>
<thead>
<tr>
<th></th>
<th>IL-2+gp100/IFA</th>
<th>IL-2</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall response rate</td>
<td>22.1%</td>
<td>9.7%</td>
<td>0.022</td>
</tr>
<tr>
<td>Progression free survival</td>
<td>2.9 months</td>
<td>1.6 months</td>
<td>0.010</td>
</tr>
<tr>
<td>Median overall survival</td>
<td>17.6 months</td>
<td>12.8 months</td>
<td>0.096</td>
</tr>
</tbody>
</table>

ASCO 2009 (Schwartzentruber & Hwu)
Reports on detrimental properties of vaccination with peptide/IFA

- Aichele et al., JEM 1995: s.c. inj. → Immunity; i.p. inj. → Tolerance
- Toes et al., PNAS 1996: Systemic peptide presentation → Tolerance
- Bijker et al., EJI 2008: Ag presentation by non-prof. APC → Tolerance

Rosenberg et al.: “The in vivo generation of gp100 reactive T cells was significantly less in patients receiving the olive compared with the beef IFA”

Slingluff et al.: “Responses to HLA-A1, A2, and DR associated peptides were largely preserved, but trended lower for some HLA-A3 associated peptides.”
gp100 peptide/IFA primes T cells ...
gp100 peptide/IFA primes T cells ... then induces tolerance

![Graph showing CD8+/Thy1.1+ (% of CD8+) vs. Days After Treatment with different groups: no vaccine + VSV.OVA, no vaccine + VSV.gp100, gp100/IFA + VSV.OVA, gp100/IFA + VSV.gp100. The x-axis represents Days After Treatment, ranging from 0 to 100, and the y-axis represents CD8+/Thy1.1+ (% of CD8+), ranging from 0 to 60. Each group is represented by a different colored line with data points and error bars. The graph shows a peak at 40 days for gp100/IFA + VSV.gp100, followed by a decrease.]
gp100 peptide/IFA primes T cells ... then induces tolerance

[Graph showing CD8+ T cell activation over time with different treatment groups.]

Similar results with OVA
CD8+ endogenous repertoire
CD8+ OT-I
CD4+ OT-II
gp100 peptide/IFA induces dominant tolerance
gp100 peptide/IFA induces dominant tolerance

![Graph showing the effect of different vaccinations on pmel-1 T cells (% of CD8+) over days after vaccination.]

- **gp100/IFA**
- **VSV.gp100**
- **VSV.gp100 + gp100/IFA (day 0)**
- **no vaccine**

Vaccinate
gp100 peptide/IFA induces dominant tolerance
Where are the T cells?

gp100/IFA s.c. + eLuc-transduced pmel-1 T cells i.v.

Rabinovich et al., PNAS 2008
Where are the T cells?

gp100/IFA s.c. + \textit{eLuc}-transduced pmel-1 T cells i.v.

Rabinovich \textit{et al.}, PNAS 2008
Where are the T cells?

gp100/IFA s.c. + eLuc-transduced pmel-1 T cells i.v.

Rabinovich et al., PNAS 2008
Vaccinate site is a sink for T cells

\[\text{gp100/IFA} + \text{IL-2} \]

\[\text{H}_2\text{O/IFA} + \text{IL-2} \]
Antigen-rich vaccine depots persist

30 days post vaccination
Antigen-rich vaccine depots persist

30 days post vaccination

IFN-γ

CD8

H₂O/IFA

gp100/IFA

vaccine depot

dLN

dLN

H₂O/IFA

gp100/IFA

spleen

pmel-1 T cells (% of CD8+ cells)

days after vaccination

pmel-1 T cells (% of CD8+)

days after vaccination

gp100/IFA on day 0 + pmel-1 on day 0

gp100/IFA on day 0 + pmel-1 on day 96
Persistent vaccine induces antigen-driven T cell tolerance: graveyard
Persistent vaccine induces antigen-driven T cell tolerance: graveyard
Limiting T cell interaction time with the vaccine depot

- 28 days
- gp100/IFA
- H2O/IFA
- 48 hr
- transfer pmel-1 effectors from DLN
Limiting T cell interaction time with the vaccine depot

- gp100/IFA
- H2O/IFA

48 hr

transfer pmel-1 effectors from DLN

28 days

measure pmel-1 response
Limiting T cell interaction time with the vaccine depot prevents tolerance
Vaccinating without IFA

![Graph showing pmel-1 T cells (% of CD8+) over days after treatment with no vacc. and gp100/IFA treatments, with a virus boost indicated.](image-url)
Vaccinating without IFA

No priming, some tolerance

![Graph showing pmel-1 T cells (% of CD8+) over days after treatment with different vaccine conditions: no vacc., gp100/IFA, gp100/PBS. The graph includes a virus boost marker.]
Vaccinating without IFA

Water-based vaccines require an adjuvant

Melief et al.
Schoenberger et al.
Noelle et al.
Kedl et al.
and many others
aCD40/imiq/IL-2 combo overcomes tolerance

![Graph showing pmel-1 T cells (% of CD8+) over time after vaccination. The graph compares gp100/IFA + aCD40/imiq/IL-2 and gp100/PBS + aCD40/imiq/IL-2 treatments.](attachment:graph.png)
aCD40/imiq/IL-2 combo overcomes tolerance but not vaccine homing
Water-based vaccines permit T cell accumulation in tumor

T cells at:

- gp100/IFA
 - aCD40/imiq/IL-2
- gp100/PBS
 - aCD40/imiq/IL-2
Water-based vaccines permit T cell accumulation in tumor

GP100/IFA
aCD40/imiq/IL-2

GP100/PBS
aCD40/imiq/IL-2

T cells at:
- tumor site
- vaccine site

T cells in ratio pmel-1 in tumor/vaccine

T cells in absolute pmel-1 in tumor

Photons per sec in tumor (x10^3)
Water-based vaccines permit T cell accumulation in tumor

T cells at:
- gp100/IFA
- gp100/PBS

Tumor vaccine site

Ratio pmel-1 in:
- gp100/IFA + aCD40/imiq/IL-2
- gp100/PBS + aCD40/imiq/IL-2

Absolute pmel-1 in tumor:
- gp100/IFA + aCD40/imiq/IL-2
- gp100/PBS + aCD40/imiq/IL-2

 photons per sec in tumor (x10^3)
Therapy with long-lived vs. short-lived vaccine

- no treatment
- gp100/IFA + aCD40/imiq/IL-2
- gp100/PBS + aCD40/imiq/IL-2

pmel-1 T cells (% of CD8+)

Days after Vaccination

vaccinate
tumor injection + boost
Therapy with long-lived vs. short-lived vaccine

- No treatment
- gp100/IFA + aCD40/imiq/IL-2
- gp100/PBS + aCD40/imiq/IL-2

Tumor size (mm²) vs. Days After Tumor Challenge

- PBS 10/10 alive
- IFA 4/10 alive
- No 0/10 alive

pmel-1 T cells (% of CD8+)

- Vaccinate
- Days after Vaccination
- Tumor injection + boost

Days After Tumor Challenge
Therapy with long-lived vs. short-lived vaccine

- no treatment
- gp100/IFA + aCD40/imiq/IL-2
- gp100/PBS + aCD40/imiq/IL-2

pmel-1 T cells (% of CD8+)

Days after Vaccination
- vaccinate
- tumor injection + boost

Tumor size (mm²)

Days After Tumor Challenge

Vaccine efficacy:
- PBS 10/10 alive
- IFA 4/10 alive
- No 0/10 alive
Therapy with long-lived vs. short-lived vaccine

If I was a MOUSE, I’d be CURED!
Working Model

Tumor
- Low [antigen]
- Low MHC-I
- Abnormal endothelium
- Stromal Barrier
- Immunosuppression

Vaccine site
- High [antigen]
- Normal MHC-I
- Normal endothelium
- No stromal Barrier
- No Immunosuppression?

brief: priming

chronic: priming → tolerance + sink
Conclusions

• Oil-based/long-lived vaccine formulations:
 ▪ activate T cells, eventually tolerize
 ▪ tolerance can be overcome by additional adjuvants
 ▪ sequester T cells at vaccine site
 ▪ limit T cell accumulation in tumor
Conclusions

- **Oil-based/long-lived vaccine formulations:**
 - activate T cells, eventually tolerize
 - tolerance can be overcome by additional adjuvants
 - sequester T cells at vaccine site
 - limit T cell accumulation in tumor

- **Water-based/short-lived vaccine formulations:**
 - require additional adjuvants to activate T cells
 - do not sequester T cells at vaccine site
 - allow T cell accumulation in tumor
 - may have greater therapeutic efficacy than long-lived formulations
Conclusions

• Oil-based/long-lived vaccine formulations:
 ▪ activate T cells, eventually tolerize
 ▪ tolerance can be overcome by additional adjuvants
 ▪ sequester T cells at vaccine site
 ▪ limit T cell accumulation in tumor

• Water-based/short-lived vaccine formulations:
 ▪ require additional adjuvants to activate T cells
 ▪ do not sequester T cells at vaccine site
 ▪ allow T cell accumulation in tumor
 ▪ may have greater therapeutic efficacy than long-lived formulations

Long-lived vaccines can induce sub-optimal anti-tumor immunity
Short-lived peptide vaccine formulations deserve consideration
This work was partially funded by:
NIH/NCI: 1R01-CA143077-01A1
NIH/NCI: 1PO1 CA128913-01A1
Melanoma Research Alliance

Cancer Vaccine Lab
Dpt. of Melanoma Medical Oncology
Yared Hailemichael, Ph.D.
Zhimin Dai, M.D.
Xuefei Huang, M.D., Ph.D.
Nina Jaffarzad, M.S.

Dpt. of Melanoma Medical Oncology
Brian Rabinovich, Ph.D.
Yang Yee, M.S.
Patrick Hwu, M.D.
Not high-zone tolerance

pmel-1 t cells (% of CD8+)

hgp100_{25-33} dose

- 0 µg
- 0.01 µg
- 0.1 µg
- 1 µg
- 10 µg
- 100 µg
- 200 µg

no priming \rightarrow no tolerance

priming \rightarrow tolerance

gp100/IFA

virus boost

days after peptide vaccination
gp100 peptide/IFA vaccine: uncertainty about impact of IFA variants

Different Adjuvanticity of Incomplete Freund’s Adjuvant Derived From Beef or Vegetable Components in Melanoma Patients Immunized With a Peptide Vaccine

Rosenberg et al.: “The in vivo generation of gp100 reactive T cells was **significantly less** in patients receiving the olive compared with the beef IFA”

Immunogenicity for CD8$^+$ and CD4$^+$ T Cells of 2 Formulations of an Incomplete Freund’s Adjuvant for Multi peptide Melanoma Vaccines

Slingluff et al.: “Responses to HLA-A1, A2, and DR associated peptides were **largely preserved**, but trended lower for some HLA-A3 associated peptides.”
aCD40/imiq/IL-2 combo overcomes tolerance but not vaccine homing
Therapy with long-lived vs. short-lived vaccine

If I was a MOUSE, I’d be CURED!
Adjuvants do not prevent tolerance
Persistent vaccine induces antigen-driven T cell tolerance