Predictive Biomarkers for Tumor Immunotherapy: Are we ready for clinical implementation?

> Howard L. Kaufman Rush University

Changing Paradigms in Cancer Treatment

Potential Uses of Biomarkers

- Adverse event monitoring
- Targets for drug discovery
 - Better systems for screening libraries
 - Providing "proof-of-principle" activity in pre-clinical setting
 - Help predict potential toxicity
- Clinical trial decision-making
 - Improved patient selection
 - Better selection of clinical endpoints
 - Reduce cost by optimizing dose selection

Requirements for Clinical Application of Biomarkers

- Must have a signaling characteristic
- Must be accurately measured
- Must be feasible to measure
- Must be validated
- Should be a commodity
- Should be cost-effective

Biomarkers in Tumor Immunotherapy

- Soluble factors
 - Serum proteins
 - Circulating DNA and tumor cells
- Tumor factors
 - Receptor expression
 - Cellular infiltrates
- Patient factors
 - Humoral and cellular immune responses
 - Immune system polymorphisms
- Mathematical predictions

Tumor Immunotherapy Biomarkers

- To date, no biomarker has accurately predicted clinical response to tumor immunotherapy
- But, there are trends that have been noted.....

Correlation of clinical response and antibody titers

Chung et al. JCO 2003

Correlation of clinical response and CD4+ T cell response

Vaccine: Allogeneic tumor cellpulsed DC

Lopez et al. JCO 2009

Correlation of clinical response and CD8+ T cell response

Vaccine: V/F-CEA-MUC1-TRICOM

Kaufman et al. J Transl Med 2007

Correlation of clinical response and Tregs

Vaccine: MVA-5T4

Issues with current biomarkers

- Small sample sizes
- Limited extension to larger phase clinical studies
- Lack of acceptance by industry
- Expensive
- Largely retrospective (and unplanned) analyses

Can biomarkers be selected for prospective evaluation?

Overall Survival of IL-2 Patients

Interleukin-2 Immunotherapy

- How does IL-2 mediate anti-tumor effects?
- Why does IL-2 induce anti-tumor responses in only 17%?
- Can we improve the number of patients who will respond to treatment?
- Is there a biomarker that can predict response to IL-2 treatment?

Predictors of Response to IL-2 Therapy

Predictor	Reference		
Performance status	Fyfe et al. JCO 1995		
Number of organs involved*	Besana et al. Eur J Cancer 1994		
Bone metastasis*	Rosenberg et al. JCO 1989		
Thrombocytopenia	Royal et al. J Immunother 2003		
Thyroid dysfunction	Atkins et al. NEJM 1988		
Rebound lymphocytosis	West et al. NEJM 1987		
Erythropoietin production	Janik et al. JCO 2002		
Increased TNF- α and IL-1	McDermott et al. Sem Oncol 2006		
Prior nephrectomy**	Figlin et al. Cancer J Sci Am 1997		

*Subsequently challenged ** Renal cell only Pre-treatment leukocytes and neutrophils predict response to IL-2-based immunotherapy

Schmidt H et al. JCO 2007;25:1562-1569

Expression of Ki-67 negatively correlates with survival following interferon-α and low-dose IL-2 in renal cell carcinoma

Miyake et al. Int J Urol 2009

High CA-IX levels predict response to IL-2 in renal cell carcinoma

Atkins et al. Clin Cancer Res 2005

VEGF predicts survival following IL-2 treatment

Sabatino et al. J Clin Oncol 2009

Clonal T cell expansion

The frequency of CD4+CD25^{hi} T cells are elevated in patients with MM and RCCA

Cesana et al. JCO 2005

Tregs decrease to normal levels after the cycle 2 in objective responders

Cesana et al. JCO 2005

The change in Treg frequency is associated with clinical response

Mean change in Treg frequency

<u>Time</u>	PD	PR	CR	P-value*
Pre-Tx – Post 1	2.05%	1.52%	0.19%	0.826
Pre-Tx – Post 2	5.09%	2.37%	-7.85%	0.004

Computational Modeling of IL-2

$$\frac{\mathrm{d}R_{\mathrm{s}}}{\mathrm{d}t} = -k_{\mathrm{f}} \cdot L[t] \cdot R_{\mathrm{S}}[t] + (k_{\mathrm{r}} + k_{\mathrm{syn}}) \cdot C_{\mathrm{s}}[t] - k_{\mathrm{t}} \cdot R_{\mathrm{S}}[t] + V_{\mathrm{S}} (1)$$

$$\frac{\mathrm{d}C_{\mathrm{s}}}{\mathrm{d}t} = k_{\mathrm{f}} \cdot L[t] \cdot R_{\mathrm{s}}[t] - (k_{\mathrm{r}} + k_{\mathrm{e}}) \cdot C_{\mathrm{s}}[t]$$
(2)

$$\frac{\mathrm{d}R_{\mathrm{i}}}{\mathrm{d}t} = -k_{\mathrm{fe}} \cdot L_{\mathrm{i}}[t] \cdot R_{\mathrm{i}}[t] + k_{\mathrm{re}} \cdot C_{\mathrm{i}}[t] + k_{\mathrm{t}} \cdot R_{\mathrm{S}}[t] - k_{\mathrm{h}} \cdot R_{\mathrm{i}}[t]$$
(3)

$$\frac{\mathrm{d}C_{\mathrm{i}}}{\mathrm{d}t} = k_{\mathrm{fe}} \cdot L_{\mathrm{i}}[t] \cdot R_{\mathrm{i}}[t] - (k_{\mathrm{re}} + k_{\mathrm{h}}) \cdot C_{\mathrm{i}}[t] + k_{\mathrm{e}}C_{\mathrm{s}}[t] \quad (4)$$

$$\frac{\mathrm{d}L_{\mathrm{i}}}{\mathrm{d}t} = \frac{(-k_{\mathrm{fe}} \cdot L_{\mathrm{i}}[t] \cdot R_{\mathrm{i}}[t] + k_{\mathrm{re}} \cdot C_{\mathrm{i}}[t])}{(V_{\mathrm{e}} \cdot N_{\mathrm{A}})} - k_{\mathrm{x}} \cdot L_{\mathrm{i}}[t] \quad (5)$$

$$\frac{\mathrm{d}L_{\mathrm{d}}}{\mathrm{d}t} = k_{\mathrm{h}} \cdot C_{\mathrm{i}}[t] \tag{6}$$

$$\frac{\mathrm{d}L}{\mathrm{d}t} = \frac{(-k_{\mathrm{f}} \cdot L[t] \cdot R_{\mathrm{S}}[t] + k_{\mathrm{r}} \cdot C_{\mathrm{s}}[t] + k_{\mathrm{x}} \cdot L_{\mathrm{i}}[t] \cdot V_{\mathrm{e}} \cdot N_{\mathrm{A}}) \cdot Y[t]}{(N_{\mathrm{A}})}$$
(7)

$$\frac{dY}{dt} = Max \left\{ \left[\frac{600 \cdot C_{s}(t)}{250 + C_{s}(t)} \right] - 200,0 \right\} \times 10^{3}$$
 (8)

Fallon and Lauffenberger Biotechn Progr 2000

Hypothesis: IL-2 will preferentially affect nTregs at different doses

IL-2 100 U/ml

IL-2 1000 U/ml

Experimental: IL-2 preferentially affects naïve Tregs in a dosedependent manner

Are we ready for clinical implementation?

- Yes for inclusion of putative biomarkers in clinical trial design
- Yes- for further validation in larger sample sizes
- Should be a high priority for academia, industry and government

Acknowledgements

The Tumor Immunology Lab

- Giovanni Cesana, MD
- Seunghee Kim-Schulze, PhD
- Dae Won Kim, MD
- Carl Ruby, PhD
- Hugo Jimenez
- Mohammed Sanshal

The Rush Melanoma Center

- Steven D. Bines, MD
- Arthur Rhodes, MD
- Vijaya Reddy, MD
- Jill Titze, NP
- Darilyn Greenhow, RN
- Nancy Licciardi
- Sherri Velez
- Jessica Sweet

- Immuneering
 - Ben Zeskind, PhD, MBA
- NIH
 - Franco Marincola, MD
 - Marianna Sabatino, PhD