T Cell-engaging Antibodies for Cancer Therapy

iSBTc Workshop on Monoclonal Antibodies in Cancer

Washington DC, October 1, 2010

Patrick A. Baeuerle
Micromet, Inc., Bethesda, MD
Bispecific T Cell-engaging (BiTE) Antibodies Allow All Cytotoxic T Cells Recognition of a Surface Antigen

Act Independently of Specificity of T Cell Receptor

Allow T Cells Recognition of Tumor-associated Surface Antigen

Do not Require MHC Class I and Peptide Antigen
BiTE Technology Teaches Antibodies to Engage T Cells

α-Tumor Antibody

BiTE

α-CD3 Single-chain Antibody

Single-chain Antibody

Linker

Human in Sequence

Crossreactive with Primates
BiTE-engaged T Cells Form Cytolytic Synapses

Confocal Microscopy

Stainings:
- Perforin
- Lck
- LFA-1 (CD11a)
BiTE Mode of Action

Clinical Proof of Concept with CD19/CD3-bispecific BiTE Antibody Blinatumomab (MT103)
Blinatumomab: First BiTE to Enter Clinical Trials

- Bispecific for CD19 and CD3
- CD19 is pan-B cell antigen absent from stem cells and plasma cells but present on most human B cell malignancies
- Ongoing phase 1 trial in patients with refractory/relapsed non-Hodgkin's lymphoma (NHL)
- Completed phase 2 study in patients with minimal residual B-precursor acute lymphocytic leukemia (B-ALL)
- Initiated pivotal study in minimal residual B-ALL, and phase 2 study in relapsed/refractory ALL of adults

\[K_D = 10^{-9} \text{ M} \]
\[K_D = 10^{-7} \text{ M} \]

Mol. Wt.: 55 kDa
T1/2 β: ca. 2 h
Produced by CHO cell-based process
Cytokine Release from T Cells by Blinatumomab Is Dependent on CD19-expressing Target Cells

Blinatumomab Triggers Potent Lysis of Lymphoma Cells by Previously Unstimulated Human T Cells

Human B Lymphoma Line MEC-1

4 Human T Cell Donors Tested

- PBMC 381
- PBMC 511
- PBMC 515
- ABi 014

1 ng/ml in Serum Gives PRs and CRs

E:T ratio = 10:1
Assay time: 24 Hours
Target: Cells: MEC-1 labelled with PKH-26

EC$_{50}$ Range: 15–40 pg/ml = 0.27 - 7.2 pM
Serial Lysis by Blinatumomab-Engaged T Cells

Effector (E) = Unstimulated human CD8⁺ T Cells
Target (T) = Human Pre-B ALL Line NALM-6

24-hour Cytotoxicity Assay

- EC₅₀ = 150 pg/ml (= 2.7 pM)
Blinatumomab Induces T Cell Proliferation

Key Hallmarks of Blinatumomab and Other BiTE Antibodies

- **Strictly target cell-dependent activation of resting T cells**
 - Monovalent binding of BiTE to CD3 does not activate TCR complex

- **Highly potent redirected lysis of target cell**
 - At femtomolar concentrations
 - CD8⁺ CD4⁺ and effector memory T cells contribute
 - Lysis of dividing and non-dividing target cells

- **Serial lysis by BiTE-activated T cells**
 - Activity at low E:T ratios <1

- **Proliferation of BiTE-activated T Cells**
 - Contribution to in-vivo efficacy

- **No internalization of target antigens or CD3**
 - Monovalent binding does not modulate surface expression
Ongoing Phase 1 Study in NHL Patients with Blinatumomab

- **Study Population**
 - Relapsed/refractory NHL patients
 - Mostly follicular and mantle cell lymphoma
 - Median of 3 previous chemo/immunotherapies (some up to 12)
 - 86% pretreated with rituximab (up to 3 different rituximab-based single agent or combination regimens per patient)

- **Design**
 - 3+3 patient dose escalation
 - Thus far dose levels ranging from 0.0005 – 0.090 mg/m² per day
 - Continuous i.v. infusion via port with portable pump over 4-8 weeks (out-patient as of week 3)
 - Steroids at infusion start
 - Objectives: Safety and tolerability, PK, PD, anti-tumor activity
Safety of Blinatumomab in NHL Patients

- To date, no cytokine storm, no autoimmunity, no lymphoproliferative disorder, no immune response to drug, no drug-related death
- Most frequent clinical adverse events (AEs) were flu-like: Pyrexia, chills, headache
- Most frequent laboratory AEs were as expected by mode of action: Lymphopenia and leukopenia
- Dose-dependency for certain AEs, e.g., pyrexia, chills, and CRP and D dimer increases
- 50% frequency of AEs during first three days, 50% during following 4-8 weeks (first dose phenomena)
- Most significant AEs leading to discontinuation were CNS-related AEs, such as aphasia, confusion, ataxia, seizure; occur shortly after treatment start; all fully reversible within days; no findings by MRI
- CNS events predominantly seen in patients with very low peripheral B cell counts (=> biomarker)
- CNS events can be mitigated by sneak-in dosing regimen
Activation and Selective Expansion of Effector Memory T Cells upon Start of BiTE Infusion

B Cell Depletion in Patient with Mantle Cell Lymphoma

Dose Level: 30 µg/m²/24 h
Dose-dependent Activity of Blinatumomab in NHL Patients

- Peripheral T Cell Redistribution
- Complete and Sustained B Cell Depletion
- Bone Marrow Clearance; First PR/CR
- RR >90%
- MTD?

Dose Levels Tested [µg/m²/Day]
Dose-dependent Clinical Responses in NHL Patients in a Phase 1 Study (ASH Dec. 2009)

- By Cheson criteria and independent review of CT scans
- Mainly follicular and mantle cell lymphoma (MCL) patients

<table>
<thead>
<tr>
<th>Dose Level</th>
<th>Patients (N = 50)</th>
<th>Complete Response</th>
<th>Partial Response</th>
<th>Overall Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5, 1.5 and 5 µg/m² per Day</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0/13</td>
</tr>
<tr>
<td>15 and 30 µg/m² per Day</td>
<td>20</td>
<td>2</td>
<td>2</td>
<td>4/20</td>
</tr>
<tr>
<td>60 µg/m² per Day</td>
<td>13</td>
<td>5</td>
<td>7</td>
<td>12/13*</td>
</tr>
<tr>
<td>90 µg/m² per Day</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2/4#</td>
</tr>
</tbody>
</table>

*One patient not evaluable due to treatment discontinuation after 2 days
#Two patients not evaluable due to DLTs
Response Assessment at 60 µg/m²/d (EHA June 2010)

Constant Dosing

- 2
- 8
- 4
- 8
- 4
- 8
- 8
- 8

Step-up Dosing (15 to 60; or 15, 30 to 60)

- 4
- 8
- 8
- 4
- 8
- 8

% Decrease in Σ Longest Diameter at 8 Week

Treatment Duration in Weeks

- 0
- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
Durability of Responses in FL and MCL for Constant Dosing at 60 and 90 µg/m² per Day

EHA June 2010

Responses at 60 µg:
- Median duration 21+ months
- Duration up to 30 months
- 4 patients = 2 years duration
- Three out of 8 ongoing

Responses at 90 µg:
- Two out of 2 ongoing

- MCL
 - PR
 - CR
- FL
 - PR
 - CR
 - PR
 - PR
 - CR
Response in a Patient with Bulky Mantle Cell Lymphoma

- Patient with MCL, stage IV A, 42 years, male
- Blinatumomab treatment at 60 µg/m²/d (monotherapy)

Cumulative Dose after 8-Week Treatment = 6 mg
Status of Phase 1 Study in NHL Patients

- Favorable safety profile
- Very high response rate at dose levels $\geq 60 \, \mu g/m^2$ per day
- Ongoing responses in half of the patients without further treatment or alternative therapies
- Study ongoing for optimization of dose and schedule and for exploration of other CD19$^+$ B cell malignancies
Completed Phase 2 Study in Patients with B-lineage Leukemia (B-ALL)

- **Patient population**: B-ALL patients with high risk of relapse due to remaining bone marrow disease after standard therapy (= minimal residual disease; MRD); detectable by PCR
- **Patients treated**: 21, with the following MRD marker:
 - Bcr/abl neg. (individ. rearrangements) 14 patients
 - Bcr/abl neg., t(4;11) 2 patients
 - Bcr/abl pos. 5 patients
- **Median age**: 48 y (20-77); 12 female, 9 male patients
- **Dosing**: 15 μg blinatumomab/m²/day by repeated 4-week continuous infusions; at least 3 consolidation cycles post positive MRD response with 2-week intervals
- **Prior treatment**: At least induction/consolidation chemotherapy I (some up to consolidation V)
- **17 patients** had never achieved MRD negativity on prior treatments
Course of Minimal Residual Disease During Frontline Consolidation Chemotherapy of ALL

Example of Patient #109-002
Effective Treatment of Minimal Residual Disease (MRD) with Blinatumomab

Patient #109-002

Leukemia

Chemotherapy GMALL (Elderly) Protocol

Blinatumomab

MRD pos.

MRD neg.

07-07 09-07 11-07 01-08 03-08 05-08 07-08 09-08 11-08

Induction Cons. 1 Cons. 2 Cons. 3 Cons. 4 MT103 MT103 MT103 MT103
Response Data

<table>
<thead>
<tr>
<th>Number of Patients Included in Study</th>
<th>Number of Patients Evaluable for Response Assessment</th>
<th>Number of Patients Reaching MRD Negativity</th>
<th>MRD Response Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>20*</td>
<td>16</td>
<td>80%</td>
</tr>
</tbody>
</table>

One patient not evaluable due to less than one treatment cycle and lack of response assessment
Hematological Relapse-Free Survival
Non-transplanted Patients (EHA 2010)

- One patient was not evaluable due to early treatment stop (AE), one patient (who responded to treatment) withdrew consent
- TKI – tyrosine kinase inhibitor given at indicated time
- Current median relapse-free survival (RFS) is 10+ months
Blinatumomab provides an active therapy that permits time to arrange for allogeneic transplant.

Patients receiving blinatumomab prior to transplant tolerate allogeneic transplant well.

Current median RFS is 13+ months; no clinical relapses encountered to date.
Summary of Phase 2 Study in Patients with Minimal Residual B-lineage ALL (EHA 2010)

- Complete molecular response in 80% (16 out of 20) of evaluable ALL patients
- Relapse free survival (RFS) so far up to 22 months, and ongoing; no median reached after 408 days; historical median RFS in this patient population is only 200 days
- Responses also observed in patients with tyrosine kinase inhibitor-refractory bcr/abl (T_{315}I), and with (4;11) translocation
- No mortality upon subsequent transplantation (N=8)
- Very favorable safety profile
<table>
<thead>
<tr>
<th>BiTE Target (Development Partner)</th>
<th>Indication/Target Tissue</th>
<th>Developmental Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD19</td>
<td>B cell malignancies and disorders</td>
<td>Pivotal</td>
</tr>
<tr>
<td>EpCAM</td>
<td>EpCAM+ solid tumors</td>
<td>Phase 1</td>
</tr>
<tr>
<td>CEA (MedImmune/AZ)</td>
<td>CEA+ solid tumors</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>N.d. (Bayer Schering Pharma)</td>
<td>Solid tumors</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>N.d. (Sanofi-aventis)</td>
<td>Solid tumors</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>N.d. (Boehringer Ingelheim)</td>
<td>Multiple myeloma</td>
<td>Pre-clinical</td>
</tr>
<tr>
<td>EGFR</td>
<td>EGFR+ solid tumors</td>
<td>In-vivo PoC (monkey, mouse)</td>
</tr>
<tr>
<td>CD33</td>
<td>AML, CML, MDS</td>
<td>In-vivo PoC (monkey, mouse)</td>
</tr>
<tr>
<td>MCSP</td>
<td>Melanoma</td>
<td>In-vivo PoC (monkey, mouse)</td>
</tr>
<tr>
<td>EphA2</td>
<td>EphA2+ solid tumors</td>
<td>In-vivo PoC (mouse)</td>
</tr>
<tr>
<td>PSCA</td>
<td>Prostate cancer</td>
<td>In-vitro activity shown</td>
</tr>
<tr>
<td>FAP-alpha</td>
<td>Sarcoma, stromal fibroblasts</td>
<td>In-vitro activity shown</td>
</tr>
<tr>
<td>IGF-1R</td>
<td>IGF-1R+ solid tumors</td>
<td>In-vitro activity shown</td>
</tr>
<tr>
<td>Her-2/neu</td>
<td>Breast and gastric cancer</td>
<td>In-vitro activity shown</td>
</tr>
<tr>
<td>Endosialin</td>
<td>Neovasculature</td>
<td>In-vitro activity shown</td>
</tr>
<tr>
<td>Carboanhydrase IX</td>
<td>Renal cancer</td>
<td>In-vitro activity shown</td>
</tr>
<tr>
<td>cMet</td>
<td>cMet+ solid tumors</td>
<td>In-vitro activity shown</td>
</tr>
</tbody>
</table>
Contributors

Academia

Ralf C. Bargou (PI)
Maximillian Topp
Nicola Goekbuget
Dieter Hölzer
Hermann Einsele
Mariele Goebeler
Stefan Knop
Rudolf Noppeney
Andreas Viardot
Georg Hess
Martin Schuler
Svenja Neumann
Heinz-A. Horst
Thorsten Raff
Monika Brüggemann
Oliver Ottmann
Heike Pfeiffer
Thomas Burmeister

Micromet

Peter Kufer
Tobias Raum and team
Ralf Lutterbuese and team
Roman Kischel and team
Patrick Hoffmann and team
Gerhard Zugmaier
Dirk Nagorsen and team
Dominik Ruettinger and team
Margit Schmidt and team
Benno Rattel and team
Thomas Urbig and team
Andreas Wolf and team
Maria Amann
Markus Muenz
Klaus Brischwein
Torsten Dreier
Robert Hofmeister

Support from

Rudolf Koehne-Volland and team
Gert Riethmüller

For publications, see www.micromet.com