Determining Potency of Immunologic Therapy:
Assessing Dendritic Cell Vaccines

Karolina Palucka, MD, PhD
Assessing Dendritic Cell Vaccines: Ten years of experience with ex vivo generated DC vaccines

- cGMP Vaccine manufacture core
- cGMP Cell and Tissue Procurement Core
- GLP Immunomonitoring Core including polychromatic flow and genomics
Baylor closed system for DC vaccines

Apheresis

Lymph Freezing Long-term storage LN2

Monocytes

DC Freezing Storage LN2

Culture

Monocyte Freezing Long-term Storage LN2

Roberts, Burkeholder, Taquet, Walters, Finholt
Assessing Dendritic Cell Vaccines:

Ten years of experience with ex vivo generated DC vaccines

• Immune and clinical outcomes
• Assessing potency of vaccine products
• Predictive biomarkers of vaccine efficacy
Distinct DC subsets induce distinct type of immune responses

Banchereau & Palucka, 2005
DENDRITIC CELL MATURATIONS
The control point of cellular immunity

Microbial Products:
- TLR, NOD and lectin ligands
- LPS, DNA, RNA

Tissue damage:
- Uric acid, HSPs

Cells of innate immunity
- pDC, NK, NK T, Neutrophils
- IFN, TNF, GM-CSF

Cells of adaptive immunity
- T and B cells
- CD40 L, RANK

Immature DC → Mature DC

Steinman & Mellman
BIIR DENDRITIC CELL VACCINE TRIALS:
FIRST GENERATION TRIALS IN METASTATIC MELANOMA

<table>
<thead>
<tr>
<th>TAA short peptides</th>
<th>Allogeneic killed tumor cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1: CD34-DCs KLH</td>
<td>#5: GM/IFN-MoDCs</td>
</tr>
<tr>
<td>#2: IFNA activated CD34-DCs</td>
<td>#4: GM/IL4-MoDCs TNF/CD40L, KLH</td>
</tr>
<tr>
<td>#3: GM/TNF-MoDCs KLH</td>
<td></td>
</tr>
</tbody>
</table>

- Activation
- Feasibility no G-CSF
- Broad TAA repertoire no HLA restriction cognate CD4+ T cell help
- Improved DCs Closed system Frozen vaccine
Peptide & KLH-pulsed CD34-DCs

Progressive patients do not mount TAA-specific responses

Boosting vaccinations can maintain long-lived melanoma-specific memory T cells

Melanoma-specific ELISPOTS / 2×10^5 PBMC

$P = 0.0032$

Palucka et al. J Immunotherapy 2003
Palucka et al J Immunotherapy 2005
DC vaccine loaded with killed allogeneic melanoma cells can induce durable clinical responses (2+1/20 patients)

Palucka et al. J Immunotherapy 2006
DC vaccine loaded with killed allogeneic melanoma cells can induce durable clinical responses (2+1/20 patients)

Palucka et al. J Immunotherapy 2006
Clinical Responders and Long term survivors: the key to design of efficient therapeutic cancer vaccine

Median Survival: 17 months

(n=66)
DC vaccines can expand long-lived melanoma-antigen specific CD8+ memory T cells

Ueno, Palucka
DC vaccines can expand high avidity polyfunctional MART-1 melanoma-antigen specific CD8+ T cells

IFNγ

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Flow Cytometry Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μM</td>
<td></td>
</tr>
<tr>
<td>1μM</td>
<td></td>
</tr>
<tr>
<td>100nM</td>
<td></td>
</tr>
<tr>
<td>10nM</td>
<td></td>
</tr>
<tr>
<td>1nM</td>
<td></td>
</tr>
<tr>
<td>No peptide</td>
<td></td>
</tr>
</tbody>
</table>

CD107

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Flow Cytometry Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μM</td>
<td></td>
</tr>
<tr>
<td>1μM</td>
<td></td>
</tr>
<tr>
<td>100nM</td>
<td></td>
</tr>
<tr>
<td>10nM</td>
<td></td>
</tr>
<tr>
<td>1nM</td>
<td></td>
</tr>
<tr>
<td>No peptide</td>
<td></td>
</tr>
</tbody>
</table>

Gr B

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Flow Cytometry Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μM</td>
<td></td>
</tr>
<tr>
<td>1μM</td>
<td></td>
</tr>
<tr>
<td>100nM</td>
<td></td>
</tr>
<tr>
<td>10nM</td>
<td></td>
</tr>
<tr>
<td>1nM</td>
<td></td>
</tr>
<tr>
<td>No peptide</td>
<td></td>
</tr>
</tbody>
</table>

CCR7

<table>
<thead>
<tr>
<th>Concentration</th>
<th>Flow Cytometry Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>10μM</td>
<td></td>
</tr>
<tr>
<td>1μM</td>
<td></td>
</tr>
<tr>
<td>100nM</td>
<td></td>
</tr>
<tr>
<td>10nM</td>
<td></td>
</tr>
<tr>
<td>1nM</td>
<td></td>
</tr>
<tr>
<td>No peptide</td>
<td></td>
</tr>
</tbody>
</table>

DC vaccines can expand high avidity polyfunctional MART-1 melanoma-antigen specific CD8+ T cells
EPIMAX: Assessment of Antigen-specific T cell repertoire ex vivo

Overlapping Peptides

CFSE-labeled PBMC

48 h

8 d

Cytokines / Luminex

Determination
- T cell epitopes
- Type of responses

CFSE-dilution analysis

Determination
- Proliferation
- CD4/CD8

Ueno
Patients with metastatic melanoma have circulating melanoma antigen-specific IL10-producing T cells at baseline.
Patients with Metastatic Melanoma Display Circulating Tumor Antigen-specific T regs

Determination of IL-10-inducing peptide

Proliferation of peptide-specific T regs

Suppressive function of specific T regs

Vence et al. PNAS, 2007
Breast cancer tumors are infiltrated by CD4+ T cells secreting IL-13.
Breast cancer cells show IL-13 staining and display an IL-13 signature (pSTAT6)

Aspord et al. J.Exp.Med. 2007 Vol.204: 1037
Assessing Dendritic Cell Vaccines:

- Immune and clinical outcomes to define biomarkers of efficacy:
 - Which patient populations to assess immunogenicity:
 MRD vs metastatic disease
Assessing Dendritic Cell Vaccines: Multivariate analysis

<table>
<thead>
<tr>
<th>Cells</th>
<th>Antigens</th>
<th>Activators</th>
<th>Route of injection</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD34-DCs</td>
<td>Peptides</td>
<td>Cytokines</td>
<td>SC</td>
</tr>
<tr>
<td>GM/IL4-DCs</td>
<td>Vectors</td>
<td>CD40 L</td>
<td>ID</td>
</tr>
<tr>
<td>GM/IFN-DCs</td>
<td>Killed cells</td>
<td>Gal Cer</td>
<td>IV</td>
</tr>
<tr>
<td>GM/IL15-DCs</td>
<td>Nucleic acids</td>
<td>TLR ligands</td>
<td>IN</td>
</tr>
<tr>
<td>Alpha DC1</td>
<td>Proteins</td>
<td></td>
<td>IL</td>
</tr>
<tr>
<td>pDCs</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mechanism/Infrastructure for analysis from many trials to draw statistically meaningful conclusions
Thanks to our patients
SUPPORT: BUMC FOUNDATION, SAMMONS CANCER CENTER, NCI, NIAID, INSERM, ANRS,
Dr M. Ramsay

- Vaccine:
 S. Burkeholder
 M. Leogier
 F. Kerneis
 M. Michnevitz
 J. Finholt-Perry

- Clinical Core:
 Joe Fay
 S. Hicks
 B-J. Chang
 D. Wood

- Cell and Tissue Core:
 L. Walters

- cGMP Lab:
 L. Roberts
 N. Taquet

- Post-docs/Students:
 C. Aspord
 F. Berard
 P. Blanco
 P. Dubsky
 D. Frleta
 E. Klechevsky

- Targeting:
 G. Zurawski
 S. Zurawski
 AL. Flamar
 E. Klechevsky
 SK. Oh

- Immunomonitoring:
 Hide Ueno
 J-P. Blanck
 L. Boudery
 J. Shay

- Microarrays:
 D. Chaussabel
 N. Baldwin
 R. Steinman
 M. Dhodapkar
 Y. Reiter

JACQUES BANCHEREAU
AND MANY BIIR MEMBERS.....