High Throughput Technology and Predictive Immune Monitoring

Peter P. Lee, M.D.
Dept. of Medicine
Stanford University
Cancer & the Immune System

- Cancer can evade and modulate the host immune response
 - Regulatory T cells are increased within the tumor microenvironment, tumor-draining lymph nodes, and blood
 - anti-tumor T cells develop but are dysfunctional
 - Other immune cell types also altered

- Immune status may predict cancer patient prognosis and guide therapy

- Immune markers may serve as surrogates for efficacy of cancer immunotherapy

- High throughput methods to systematically assess host immune function are needed
Some High Throughput Methods for Immune Analysis

- Enumeration of immune cell populations and subtypes: FACS, pMHC tetramers, ELISPot

- Immune cells biology
 - Gene expression, microRNA, epigenetics: microarrays
 - Functional responses: CFC, phosflow, Luminex, qPCR

- Soluble factors: proteins, lipids, small molecules
Gene Expression Profiling of Lymphocytes from Melanoma Patients

12 Melanoma Patients: Stage IV, resected, no recent systemic therapy
12 Healthy donors: age- and gender-matched

PBMCs sorted by FACS into:
CD8 T cells, CD4 T cells, B cells and NK cells (>99%)

Total RNA, amplified (with amino-allyl labeling)

Hybridized onto Agilent Human microarrays (22K) with Total Lymphocyte Reference RNA
<table>
<thead>
<tr>
<th>Entrez Gene Symbol</th>
<th>Entrez Gene Name</th>
<th>Adjusted P value</th>
<th>↑ or ↓ in melanoma</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFIT3 *</td>
<td>interferon-induced protein with tetratricopeptide repeats 3</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>RSAD2 *</td>
<td>radical S-adenosyl methionine domain containing 2</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>LOC129607</td>
<td>hypothetical protein LOC129607</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>IFI44L *</td>
<td>interferon-induced protein 44-like</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>IFIT1 *</td>
<td>interferon-induced protein with tetratricopeptide repeats 1</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>IFIT2 *</td>
<td>interferon-induced protein with tetratricopeptide repeats 2</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>OAS3 *</td>
<td>2'-5'-oligoadenylate synthetase 3, 100kDa</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>FREQ</td>
<td>frequenin homolog (Drosophila)</td>
<td>0.00125</td>
<td>↓</td>
</tr>
<tr>
<td>OAS1 *</td>
<td>2',5'-oligoadenylate synthetase 1, 40/46kDa</td>
<td>0.00200</td>
<td>↓</td>
</tr>
<tr>
<td>STAT1 *</td>
<td>signal transducer and activator of transcription 1, 91kDa</td>
<td>0.00200</td>
<td>↓</td>
</tr>
<tr>
<td>IFI44 *</td>
<td>interferon-induced protein 44</td>
<td>0.00250</td>
<td>↓</td>
</tr>
<tr>
<td>ISG15 *</td>
<td>ISG15 ubiquitin-like modifier</td>
<td>0.00250</td>
<td>↓</td>
</tr>
<tr>
<td>SAMD9L</td>
<td>sterile alpha motif domain containing 9-like</td>
<td>0.00385</td>
<td>↓</td>
</tr>
<tr>
<td>PARP9</td>
<td>poly (ADP-ribose) polymerase family, member 9</td>
<td>0.00400</td>
<td>↓</td>
</tr>
<tr>
<td>CXCL11 *</td>
<td>chemokine (C-X-C motif) ligand 11</td>
<td>0.00400</td>
<td>↓</td>
</tr>
<tr>
<td>GBP1 *</td>
<td>guanylate binding protein 1, interferon-inducible, 67kDa</td>
<td>0.00688</td>
<td>↓</td>
</tr>
<tr>
<td>CXCL10 *</td>
<td>chemokine (C-X-C motif) ligand 10</td>
<td>0.02278</td>
<td>↓</td>
</tr>
<tr>
<td>MX2 *</td>
<td>myxovirus (influenza virus) resistance 2 (mouse)</td>
<td>0.02278</td>
<td>↓</td>
</tr>
<tr>
<td>EIF2AK2 *</td>
<td>eukaryotic translation initiation factor 2-alpha kinase 2, IFN-inducible</td>
<td>0.02526</td>
<td>↓</td>
</tr>
<tr>
<td>LAMP3</td>
<td>lysosomal-associated membrane protein 3</td>
<td>0.02950</td>
<td>↓</td>
</tr>
<tr>
<td>USP18 *</td>
<td>ubiquitin specific peptidase 18</td>
<td>0.03143</td>
<td>↓</td>
</tr>
<tr>
<td>SAMD9</td>
<td>sterile alpha motif domain containing 9</td>
<td>0.03545</td>
<td>↓</td>
</tr>
<tr>
<td>PLSCR1</td>
<td>phospholipid scramblase 1</td>
<td>0.03565</td>
<td>↓</td>
</tr>
<tr>
<td>BIRC4BP</td>
<td>XIAP associated factor-1</td>
<td>0.04333</td>
<td>↓</td>
</tr>
<tr>
<td>IFI27 *</td>
<td>interferon, alpha-inducible protein 27</td>
<td>0.04440</td>
<td>↓</td>
</tr>
</tbody>
</table>

* Interferon-stimulated gene

Interferon signaling pathways

- STAT1 pY701 common to both type-I and –II IFN signaling pathways

- Anti-STAT1 pY701 validated for Phosflow analysis
Phospho-flow cytometry for high-throughput immune monitoring

- Analysis of signaling capacity of immune cell populations on a single-cell basis
- Intracellular staining of phosphorylated signaling molecules after stimulation with various cytokines
- Example: pSTAT1 after IFN-α or IFN-γ stimulation
IFN-α-induced pSTAT1-Y701 is reduced in T cells, B cells and NK cells from cancer patients

- Lymphocytes were stimulated with 1000 IU/mL IFN-α and pSTAT1 was measured in T cells, B cells and NK cells
- Fold change in pSTAT1: MFI pSTAT1 in IFN-stimulated cells/MFI pSTAT1 in unstimulated cells

* p-value < 0.05

Critchley-Thorne et al. PNAS 2009 Jun 2;106(22):9010-5
IFN-γ-induced pSTAT1-Y701 is reduced in B cells from cancer patients

- Lymphocytes were stimulated with 1000 IU/mL IFN-α and pSTAT1 was measured in T cells, B cells and NK cells
- T cells and NK cells from healthy donors and cancer patients show minimal phosphorylation of STAT1 in response to IFN-γ

Critchley-Thorne et al. PNAS 2009 Jun 2;106(22):9010-5
ISG Expression is Reduced in Lymphocytes from Breast Cancer Patients

ISGs measured directly *ex vivo* by rQ-PCR in unstimulated lymphocytes

Critchley-Thorne et al. PNAS 2009 Jun 2;106(22):9010-5
Other cytokine signaling pathways

Invitrogen

Expanded Phosflow Panels

• Examine multiple immune cell types: CD4 T, CD8 T, B, NK, monocytes

• Assess additional cytokine signaling pathways beyond IFN: IL-2, IL-4, etc.

• Measure multiple signaling molecules: JAK, STAT, etc.

• Limited by available phospho antibodies and overlapping spectra of fluorophores
Luminex for Multiplex Analysis of Phospho-Proteins

• Multiplex analysis of up to 100 analytes from a single sample

• Allows comprehensive analysis of entire signaling networks

• High sensitivity allows signaling analysis from small sample sizes (<10 ug of cell lysate)

• Limited by inability to analyze cells on single-cell level
 – First need to separate different immune cell populations
Phosflow vs. Luminex
Defects in downstream IFN functional responses in T cells from breast cancer patients

Multivariate analysis of CD25, HLA—DR, CD54 and CD95: the expression levels of these activation markers were significantly reduced in T cells stimulated with anti-CD3/CD28 alone (p=0.021) and in combination with IFN-α (p=0.038) in breast cancer patients vs. healthy controls.
Summary

• IFN signaling defects develop in lymphocytes from patients with three major cancers: melanoma, breast, and GI
 – IFN-α in T, B, and NK cells
 – IFN-γ in B cells

• Downstream functional defects include reduced activation, proliferation, and increased apoptosis

• Signaling in other cytokine pathways in different immune cell types being assessed via expanded phosflow and Luminex

• Each high throughput method has advantages and limitations
Current and future directions

• Understanding global cytokine signaling patterns in different immune cell populations at different times (pre-tx, remission, relapse) will provide snapshots of immune function in cancer

• Specific immune defects may provide prognostic information or predict relapse

• Strategies to correct specific cytokine signaling defects may be useful as standalone or adjuvant therapy for cancer
Acknowledgments

Andrea Miyahira, PhD
Rebecca Critchley-Thorne, PhD
Ning Yan, PhD
Diana Simons
Gerald Lee

Susan Swetter, MD (Dermatology)
Denise Johnson, MD (Surg Onc)
Susan Holmes, PhD (Statistics)
Jeffrey Weber, MD, PhD (Moffitt)
John Kirkwood, MD (UPMC)