Eosinophils Modulate Tumor Microenvironment By Oxidizing DAMPs From Necrotic Tumor

Ramin Lotfi, MD
University of Ulm / German Red Cross, Germany
Institute of Transfusion Medicine and Immunogenetics

University of Pittsburgh, Hillmann Cancer Center, USA
Mode of Cell Death is Important for Danger Recognition

- Release Contents
 - Modulate Immune Response,
 - Induce Angiogenesis & Tumor Proliferation

- Ingested by Phagocytes
 - Apoptotic Bodies

- Contents
 - Sequestered in Apoptotic Bodies

- Necrosis
- Apoptosis

- unexpected “Bloody Death”
- programmed “Silent Death”
Damage-associated Molecular Patterns (DAMPs):

Cell Constituents:
- HMGB1
- Heat shock proteins
- Uric Acid, ATP, Adenosine
- s100 proteins
- Hepatoma derived growth factor
- Cardiolipin

Secreted molecules:
- Fibrinogen domain A
- Surfactant protein A

Matrix elements:
- Heparan sulfate
- Soluble hyluranan
- Fibronectin
Eos are Attracted By Cell Debris And Found In Necrotic Tissues

Stenfeldt AL, Wenneras C. (Immunology 2004)

In vitro

Cormier SA, Lee NA (J Leuk Biol, 2006)

In vivo
Eosinophils
- Asthma/autoimmune/allergic diseases
- Helminth infections
- Cancer (colorectal cancer patients with eosinophilia have a better prognosis)
 Lotfi et al., J Immunother. 2007
- Highly cytotoxic granules (MBP, EPO)
- Highest oxid. Burst compared to other leukocytes
Summary of background information and hypotheses

- Tumors undergo necrosis => release of DAMPs
- DAMPs influence tumor microenvironment
- Eos are attracted by DAMPs

Interaction between Eos & DAMPs ??
Experimental design:

Induction of necrosis by repeated freeze/thaw cycles to obtain DAMPs

Stimulated Eos with DAMPs

Read-Out:
Degranulation (Release of MBP&EPO)
Oxidative Burst (Generation of ROS)
Necrotic Material induce Eos Degranulation

A

HCT-116

CACO-2

Intracellular MBP (log 10 fluorescence)

Eos Count

w/o Lysate

+ Lysate

B

EPO Release x10^3 Eos Equivalent

EPO Release x10^3 Eos Equivalent

Untreated PMA CACO HCT

C

Intracellular MBP

D

Lysed HCT cells

EPO Release
Necrotic Material induce Eos Degranulation

Stimulation with HCT-Lysate

Eosinophil Count

Intracellular MBP (log scale)

No lysate
2 min
5 min
30 min
120 min
Necrotic Material Enhance Eos Oxid. Burst

A

- Stimulated with lysate
- Non-stimulated

Eosinophil Oxid. Burst

B

Eosinophils
Granulocytes

Oxid. Burst

D

Eosinophil Burst

- Untreated
- HCT-Lysate

Rel. Oxid. Burst

Lysed MSC Cells/ml

10^5 10^4 10^3 10^2
H2O2 Neutralizes The Effect Of Necrotic Material On Eosinophils.
Biology of HMGB1

a In the nucleus
- Binds DNA
- Binds to distorted DNA
- Modulates interaction of transcription factors with DNA

b At the cell surface
- Axonal sprouting and neurite outgrowth
- Cell migration and metastasis of tumour cells

c Extracellular
- Binds RAGE, TLR2 and TLR4
- Signals through NF-κB

d Necrosis
- Released from cell
- Drives inflammation and/or repair

HIGH-MOBILITY GROUP BOX 1 PROTEIN (HMGB1): NUCLEAR WEAPON IN THE IMMUNE ARSENAL

*Michael T. Lotze and *Kevin J. Tracey
The Receptor For Advanced Glycation End Products, RAGE on Eosinophils.
RAGE Participates in DAMPs-Induced Eosinophil Activation

C

Stimulation

No lysate

HCT-lysate + anti-RAGE

HCT-lysate + anti-HMGB1

HCT-lysate

No lysate

MSC-lysate + anti-RAGE

MSC-lysate + anti-HMGB1

MSC-lysate

Eosinophil Count

Intracellular MBP (log scale)

D

Eos Oxid. Burst

anti-RAGE

- - +

HCT-Lysate

- +
Human Eosinophils Degranulate Following HMGB1 Treatment
HMGB1 Specifically Enhances the Oxid. Burst of Eos When Compared With Neutros

![Graph showing the oxidative burst of eosinophils and granulocytes with different concentrations of HMGB1 over time.](image)
HMGB1 Serves As Chemoattractants For Human Granulos And Eos
Inhibition of HMGB1 Induced Eos Migration

![Graph showing inhibition of HMGB1 induced Eos migration. The graph compares HMGB1 (10μg/ml), HMGB1 + goat IgG, Oxidized HMGB1, and HMGB1 + anti-RAGE in terms of Eos migration (Fold Increase).]
HMGB1
Enhance Survival Of Human Eosinophils
Oxidized DAMPs Lose Their Capacity to Stimulate DCs

Marker of differentiation Aktivierungs-märker Differenzierungs-märker
Eosinophils Promote Oxidation of DAMPs
Dr. Lotze's DAMP Lab

ramin.lotfi@uni-ulm.de

Lotfi et al., J Immunol., Oct 1, 2009