Overview of Phase 1 Oncology Trials of Biologic Therapeutics

Susan Jerian, MD
ONCORD, Inc.
February 28, 2008
Assumptions and Ground Rules

• The goal is regulatory approval of the product in an efficient, clinically meaningful, and responsible manner
• Science, rather than tradition, dogma or “checking the box” will drive study design
• “Less may be More” i.e. the MTD is generally not applicable for many biologics
• Preclinical program was well planned and well conducted
Goals for Phase 1

• Describe preliminary safety profile
 – Multiple tumor types vs. indicated population
 – Experience to allow for any needed dose modification rules for Phase 2 and beyond

• Determine dose and schedule
 – Route (intradermal, intratumoral, IV, hepatic artery, intrapleural, intracranial, etc)
 – Dose escalation schema
 – Prospectively defined basis for selection of recommended dose

• Demonstrate proof of concept
 – Special assays
 – Biomarkers
 – Surrogate endpoints that measure mechanism related outcomes
What can go wrong?

• Just about anything!
• Keep the focus on Patient Safety
• Phase 1 is designed to prevent or address problems in an optimal manner
• ICU resident analogy: We know the disasters are coming; the question is how prepared are we to deal with them
What do we need to start?

• GMP manufactured product (challenges here are not to be underestimated)
• Preclinical efficacy data (if relevant model)
• Preclinical toxicology data in most relevant and most sensitive species and of proper duration to support duration of treatment in Phase 1 design
• Proper expertise and administrative structure
• Regulatory permission [FDA, RAC (for gene therapies, EMEA, etc)]
 – Pre IND meetings are often critical
• Target Product Profile (FDA Guidance)
The Vision: Target Product Profile

- Indication and usage
- Dosage forms and strengths
- Contraindications
- Warnings and Precautions
- Adverse reactions
- Drug interactions
- Special populations (e.g. pts who are pregnant or lactating, geriatric, pediatric, renal or hepatically impaired)
- Overdosage
- Product Description
- Clinical Pharmacology (e.g. MOA, PK, PD)
- Non-clinical toxicology
- Clinical studies (measures of efficacy – endpoints)
- How supplied
- Patient counseling information
Dose

• Defined by preclinical pharmacology and toxicology studies

• Starting Dose: Adequate margin of safety
 – FDA guidance on safe starting dose helpful for therapeutic proteins and antibodies; may or may not apply to vaccine, cell and gene therapy
 – EMEA guidance on high risk agents

• Maximum dose
 – Supported by anticipated range for efficacy and toxicology data
 – MFD (maximum feasible dose)
Dose Escalation and Duration of Txt

• Dose escalation
 – Stagger enrollment to achieve observation period between patients and cohorts
 – Length of observation period dependent on MOA and construct of the product
• Duration of treatment matches duration in toxicology studies
 – Single dose vs. repeat dosing
• Take into account mechanism of action
 – Don’t depend completely on toxicology studies (e.g. Tegenero experience)
Endpoints in Phase 1

- Primary
 - Safety and Tolerability
 - Recommended dose

- Secondary
 - PK
 - PD
 - Surrogate endpoints (biomarker, imaging study, immune response assay, tumor response, and others related to mechanism of action of the product)
Therapeutic Areas – Key Issues

• Therapeutic Proteins
• Monoclonal Antibodies
• Therapeutic Vaccines
• Cellular and Tissue Therapies
• Gene Therapies
• Combinations
• Novel Products
Therapeutic Proteins and MoAbs

• Regulated in CDER
• Estimation of safe starting dose (FDA Guidance)
• Dose escalation somewhat empiric
• PK/PD
• Immunogenicity
• Biomarkers for targeted therapies
• Assays may be critical to aid in dose selection
Therapeutic Proteins

• Usually there are relevant animal models from which to estimate safe starting dose

• Healthy volunteer vs. patients
 – Risk benefit analysis
Antibodies

• Construct (e.g. chimeric, humanized, fully human, engineered to enhance specific functions)
 – May limit relevance of animal studies
 – Syngeneic models sometimes needed
• Tissue cross reactivity panel
 – Critical for safety profile estimation
 – Impact on clinical monitoring during clinical trial
• Selection of patients for targeted therapy (enrichment) vs. all comers with assessment of target presence or absence in all
 – Phase 1 may be the best time to look at all comers
Therapeutic Vaccines (I)

• Components to improve immune response
 – One or more adjuvants
 – Immune modulators
 – Route of administration
• Autologous vs. allogeneic vs. neither
• Increase in heterogeneity of outcome for the endpoint measured may necessitate increase in sample size
 – Placebo control may help address variability issue and aid in improved interpretability of the data
• Assays for outcome measures
Therapeutic Vaccines (II)

- Dose escalation methodology
 - Tend to have fewer dose levels compared to proteins and antibodies
 - Usually half log increments
- PK may not be possible or relevant parameter for some products
- Basis for decisions
 - Prospectively define how the recommended dose(s) will be selected
Cellular and Tissue Therapies

- Among the most challenging products to characterize
- Many issues similar to those with therapeutic vaccines
- Derivation of product
 - Issues around manufacture
- Dose escalation methodology
 - Typically half log increments
Gene Therapies Definition

“All products that mediate their effects by transcription and/or translation of transferred genetic material and/or by integrating into the host genome and that are administered as nucleic acids, viruses, or genetically engineered organisms.” [applies to in vivo or ex vivo settings]

-FDA Guidance Gene Therapy Clinical Trials – Observing Subjects for Delayed Adverse Events, Nov 2006
Gene Transfer System Selection

- Impact on clinical study design
- Elements
 - vector and vector formulation
 - route and method of delivery
- Identification of recommended dose
 - Proof of concept
 - Assays for duration of transfer or gene product expression or downstream effect
- Safety
 - Two Guidance documents (Gene Therapy-Delayed AEs and Testing for Replication Competent Retrovirus (RCR))
Gene Therapies - LTFU

- MFD may not be clinically relevant dose limiting predictability of animal models
- Factors that increase risk of AEs
 - Persistence
 - Integration
 - Prolonged expression
 - Alteration of host genome
- LTFU plan must be included with protocol submission to IND
 - 15 years
 - Intensity of FU depends on product and results of clinical and laboratory evaluations.
GT – LTFU Algorithm

• Ex vivo product?
• Persistence?
• Integration?
• Potential for latency or reactivation?
• Answers form the basis for LTFU plan by segregating low vs. higher risk products
 – Determines whether LTFU is needed
Combination Therapy

- Co-administration or sequential administration
- Achieve additive or synergistic efficacy based on MOA
- May or may not require additional toxicology testing of the combination prior to clinical trial
 - Overlapping toxicology findings or AE profiles of the individual agents may necessitate combo tox
- If both products are unapproved, need separate phase 1 trials of each as monotherapy
 - Complex dose escalation issues with combo
 - Show contribution of both
Combination Product

- Biologic-Device
- Biologic-Drug
- Biologic-Drug-Device
- Regulatory definition which links the given combination
 - Discuss with FDA early
 - Inter-center collaboration may be needed
Novel Biologic Products

• Call FDA early to get guidance on preclinical program planning and possibly on CMC issues.
Phase 1 Outcome

- **Recommended dose(s)**
 - May still need to do additional dose finding in Phase 2
- **Proof of Concept**
 - Helpful for “go” vs. “no-go” decision making
 - May be based on a surrogate
- **Safety Profile (rough estimate only)**
- **Refinement of target patient population or indication**
 - May still need additional Phase 1 data prior to initiating Phase 2
- **Paves the way to Phase 2 and Beyond**
Useful Reference

“A Clinical Development Paradigm for Cancer Vaccines and Related Biologics”

Cancer Vaccine Clinical Trial Working Group

J. Immunotherapy 30(1), Jan 2007, pp1-15
END