Development of Adenovirus vectors – from preclinical to Phase III
iSBTc Oncology Biologics Development Primer
Sunil Chada, Ph.D.
s.chada@introgen.com
<table>
<thead>
<tr>
<th>Product (Target)</th>
<th>Pre-Clinical</th>
<th>Phase I</th>
<th>Phase II</th>
<th>Phase III</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVEXIN (p53)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and Neck (monotherapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Head and Neck (combo/chemo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Esophageal Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>+ 4 additional solid cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INGN 241 (mda-7/IL-24)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Tumors + XRT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Melanoma</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INGN 225 (p53 Immunotherapy)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Small-cell Lung Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Breast Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INGN 401 (Nanoparticle-FUS-1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lung Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INGN 234 (Mouthwash)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral cancers</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ADVEXIN® Construct

35.4 kb Adenovirus genome

- p53
- Adenovirus Structural Proteins
 - E1A/E1B Deleted
 - (E1)
 - E2
 - E3
- E4

CMV Promoter

Human wt p53 cDNA

SV40 Poly A

2.3 kb Expression cassette insert

Hexon
Penton
Fiber
Core

Core
Hexon associated
ADVEXIN®
p53 Tumor Suppressor Therapy

- Selectively kills cancer cells, safe to normal cells
- Pharmacologic intervention with p53 protein - targets fundamental molecular defect in cancer
- Non-replicating adenovirus; well tolerated >600 patients; >30 trials
- Excellent safety profile
- Useful alone and in combination with local and systemic modalities — radiotherapy, surgery, chemotherapy, biotherapy
Mechanisms of ADVEXIN® Activity

1. Cell cycle arrest
 - CDK
 - BAX
 - BAK

2. Apoptosis
 - FasL
 - Fas
 - Akt
 - p53
 - MDM2
 - BAX
 - BAK
 - Caspase Recruitment and Activation

3. Anti-angiogenesis
 - VEGF
 - Angiogenic Factors
 - Anti-angiogenic Factors
 - GD-AIF
 - BAI-1
 - TSP

Regulatory Feedback Loop
- p21
- p53
- MDM2
Preclinical studies

SiHa tumors
1E11 vp IT; 6 injections
Hamada et al, Cancer Res 56: 3047, 1996

HeLa cells
Trypan blue assay

MOI (vp/cell)

Cell Viability

0 2000 4000 6000 8000 10000 12000

0 50 100 150 200 250

Ad- empty

Advexin

Tumor Volume (mm^3)

PBS
AdSCMV-poly A
AdSCMV-p53

Day

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0 500 1000 1500 2000 2500
Advexin exhibits tumor-selectivity

<table>
<thead>
<tr>
<th>Tumor type</th>
<th>Killing in vitro</th>
<th>Killing in vivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCHN</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>NSCLC</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Breast</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Prostate</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Colorectal</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Ovarian</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>HCC</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Glioma</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Melanoma</td>
<td>√</td>
<td>n.d.</td>
</tr>
<tr>
<td>Cervical</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Bladder</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Sarcoma</td>
<td>√</td>
<td>√</td>
</tr>
<tr>
<td>Myeloma</td>
<td>√</td>
<td>n.d.</td>
</tr>
<tr>
<td>Normal cells</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
ADVEXIN® Inhibits Tumor Growth in Combination with Other Cancer Therapies

Additive or synergistic effects

<table>
<thead>
<tr>
<th>Tumor types</th>
<th>Therapies</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCCHN</td>
<td>XRT</td>
</tr>
<tr>
<td>NSCLC</td>
<td>CDDP</td>
</tr>
<tr>
<td>Breast</td>
<td>5FU</td>
</tr>
<tr>
<td>Prostate</td>
<td>Taxanes</td>
</tr>
<tr>
<td>Colorectal</td>
<td>CPT-11</td>
</tr>
<tr>
<td>HCC</td>
<td>Doxorubicin</td>
</tr>
<tr>
<td>Glioma</td>
<td>etc</td>
</tr>
</tbody>
</table>
Additional preclinical studies

• 8 GLP toxicology studies: mice, rats, cotton rats
 – Advexin well tolerated: sq; oral; iv; ip; ia
 – The liver is affected at very high doses with iv route, but see no liver effects in the clinic

• Biodistribution (PK) studies
 – $t_{1/2} = 10$ minutes; no gonadal persistence

• Other safety studies
 – Little/ no effect on normal cells; lack of replication or integration

 Therapeutic index > 3 logs
Clinical Studies
Advexin® Clinical Program

• > 600 patients treated with > 3,000 doses
• First trial conducted in 1995; published results in 1996
• > 30 active or completed trials
• Most patients treated with intratumoral injection
• Four additional routes of administration: IV, IP, BAL, intravesicle
• Randomized controlled Phase III multinational studies ongoing
Advexin® Clinical Program

- **Phase I Trials** – **US**; EU; Japan
 - Head & Neck, Lung, Breast, Prostate, Colorectal, Bladder, Ovarian, Brain, Lung + Chemotherapy, Solid Tumors (IV), Oral Premalignancy

- **Phase II Trials**
 - Head & Neck, Lung + Radiation, Breast + Chemotherapy, Esophageal

- **Phase III Trials**
 - Head & Neck ± Chemotherapy
ADVEXIN® Well Tolerated Safety Data in >600 Treated Patients

<table>
<thead>
<tr>
<th>Body System</th>
<th>EVENT</th>
<th>All Serious Adverse Events Occurring in > 1% of Patients</th>
<th>SAE - Investigator Related</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Body as a Whole</td>
<td>Fever</td>
<td>13</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Pain</td>
<td>10</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>Asthenia</td>
<td>7</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>Infection local</td>
<td>16</td>
<td>2.6</td>
</tr>
<tr>
<td></td>
<td>Tumor hemorrhage</td>
<td>28</td>
<td>4.5</td>
</tr>
<tr>
<td></td>
<td>Procedure (Inpatient scheduled)</td>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>Digestive</td>
<td>Vomit</td>
<td>11</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Dysphagia</td>
<td>8</td>
<td>1.3</td>
</tr>
<tr>
<td>Respiratory System</td>
<td>Pneumonia</td>
<td>38</td>
<td>6.1</td>
</tr>
<tr>
<td></td>
<td>Dyspnea</td>
<td>24</td>
<td>3.9</td>
</tr>
<tr>
<td></td>
<td>Apnea</td>
<td>11</td>
<td>1.8</td>
</tr>
<tr>
<td>Cardiovascular System</td>
<td>Hypotension</td>
<td>11</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Heart arrest</td>
<td>9</td>
<td>1.5</td>
</tr>
<tr>
<td>Metabolic and Nutritional Systems</td>
<td>Dehydration</td>
<td>26</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>Kidney Failure</td>
<td>7</td>
<td>1.1</td>
</tr>
</tbody>
</table>
ADVEXIN® Monotherapy Results in Long Term Survival (> 8 years) in SCCHN

Age=48

Baseline: 27 May 1998

Cycle 13: 21 June 1999
39 injections
≈ 6×10^{13} vp

8 June 2006
276 injections
≈ 4×10^{14} vp
Objective response after Advexin injection in NSCLC

Molecular pharmacology and biomarker development
Upstream Regulators

- p14ARF
- HDM2

Downstream Effectors

CELL CYCLE
- p21
- Cdk
- G1
- PCNA
- G1/S

ANGIOGENESIS
- BAI-1
- TSP-1
- VEGF

APOPTOSIS
- Bax
- Bak
- Bcl2

TUMOR IMMUNITY
- CD95L/FasL

Genomic integrity

Growth control
Representative images from Advexin Phase II SCCHN patient tumors depicting examples of positive and negative immunostaining with each antibody.
Interrogation of p53 pathway markers for tumor response and survival

<table>
<thead>
<tr>
<th>Tumor Marker*</th>
<th>N</th>
<th>P-value</th>
<th>Overall Survival (Months)</th>
<th>Log-Rank Test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tumor Marker*</td>
<td>N</td>
</tr>
<tr>
<td>p53</td>
<td>18</td>
<td>0.03</td>
<td>positive</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>negative</td>
<td>7</td>
</tr>
<tr>
<td>p53-Ser15</td>
<td>18</td>
<td>0.07</td>
<td>positive</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>negative</td>
<td>9</td>
</tr>
<tr>
<td>p14^{ARF}</td>
<td>18</td>
<td>0.28</td>
<td>positive</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>negative</td>
<td>14</td>
</tr>
<tr>
<td>HDM2</td>
<td>17</td>
<td>0.10</td>
<td>positive</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>negative</td>
<td>9</td>
</tr>
<tr>
<td>Bcl-2</td>
<td>17</td>
<td>0.17</td>
<td>positive</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>negative</td>
<td>12</td>
</tr>
<tr>
<td>survivin</td>
<td>13</td>
<td>0.62</td>
<td>positive</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>negative</td>
<td>3</td>
</tr>
</tbody>
</table>

* ≥20% is positive for p53, p14^{ARF}, HDM2, Bcl2, and survivin; ≥5% is positive for p53-Ser15
--- could not be calculated reliably variability in the data
Imaging technology: PET-CT response in LFS patient

Pre-Treatment

Post-Treatment

SUV: 80% decrease in injected lesion. Non-injected lesion; 130% increase
Case Studies: Lessons and Issues

• **Key Strategic Decisions**

 Early decision on r & D development company

 Rely upon academic collaborations for “r”, animal data, etc.

 Focus resources on generation of clinical data

 Important to control supply of clinical-grade materials

 Decision made early to create manufacturing infrastructure

 Develop parallel regulatory development paths with FDA and EMEA

 Take industrialized approach to clinical design and biostatistics – avoid repeating studies

• **Impact of Regulatory Interactions**

 Provided valuable guidance

 Early interactions important to avoid surprises

 Regulators don’t have all the answers

 Be collaborative, not combative
Case Studies: Lessons and Issues

• **Financial Considerations: Projected Costs vs. Reality**

 Everything is more expensive and takes longer…..

 Heavy price for first-in-class development

 - No regulatory precedents
 - Investor reluctance (no comparables)
 - Pharma partner caution

 Avoid temptation to cut corners on required GLP studies
 (more expensive to do it twice!!)

 Outsourcing/ consultants

 - need careful oversight
 - do not assume they are “experts” in your area
 - monitor timelines

• **People matter**

 - Flexible, non-silo people key in the early days
 - Research mindset needs to evolve to industrial/b business approach
Case Studies: Lessons and Issues

• **Impact of long development timelines**
 – Early studies may not meet current standards (e.g., PCR sensitivity; RCA levels)
 – Evolution of clinical standard of care
 – New drug approvals
Lessons learned

1. Early deployment of Clinical Development Plan
 - Synchronize research and clinical studies
 - Enhances iterative translation-based development program
 - Challenges of using CROs:
 • Databases
 • Monitoring
 • Need oversight
 - Tough to modify protocols/ CRFs during study
 - Stick to the plan!! Avoid tempting, incremental research
Lessons learned

2. Biomarker development
 – Goal is to identify responding and non-responding patient populations
 – Limited by patient #/ samples/ informed consent/ etc
 – Preparation is critical – work closely with PI’s on informed consent, CRF’s, sample logistics
Words to the Wise

– Have the courage to kill a project
– Impact of having pharma partner early
 • Differences in cultures and risk assessment
 • Keep your eye on the clinical development plan
 • Control your company’s/project’s destiny

– What is your backup plan ???
 • Financially
 • Balance need for product pipeline with “all eyes on the prize”
Questions?