iSBTc Oncology Biologics Development Primer
February 28-29, 2008
Dendritic Cell Based Products

RNA electroporated CD14-derived Dendritic Cells
Overview

• Introduction to DCs and Arcelis™
• Issue 1: Non-Clinical Package
• Issue 2: Phase 1 Considerations
• Issue 3: Translational Package
• Issue 4: Product Optimization
• Issue 5: Suitable Study Designs
• Issue 6: Combination Therapy
• Issue 7: cGMP Manufacturing
• Discussion
Dendritic cells (DCs):

- Link between innate and adaptive immunity
- Organize and transfer information from the outside world to the cells of the adaptive immune system
- Versatile controller of the immune system
- Peripheral monocyte or bone-marrow-derived
- Immature - self tolerance
- Mature – induction of antigen specific immunity
- Impaired DC function leads to or associated with:
 - Autoimmunity: lupus, arthritis, psoriasis
 - Allergy
 - Cancer
Dendritic Cell – T-cell:
Interaction between innate and adaptive immunity facilitated by IL-12

The interaction between dendritic cells (DCs) and T cells involves three signals

Expert Reviews in Molecular Medicine © 2002 Cambridge University Press
Present Use of DCs in Clinical Studies

- Various strategies of differentiation
- Various loading strategies
 - Passive vs. active
 - Peptides, RNA, DNA constructs
- Various clinical administration strategies
 - Intradermal
 - Intranodal
 - Subcutaneous
 - Intravenous
Argos Autologous RNA-Loaded Dendritic Cell Immunotherapy: Arcelis™

• Powerful Antigen Presenting Platform
 – *Monocyte-derived dendritic cells* (DCs)

• Effective Antigen Amplification Platform
 – *RNA-based*
 – Polyvalent
 – Captures “private mutations’

• Advanced Processes
 – *Centralized manufacturing*
 – Automated, functionally closed

• Ability to induce effective CD8 response without the need to activate CD4+ compartment (HIV)
Arcelis™ Platform Overview

Clinical Site
- Small Amount of Tumor Cell or Pathogen
- Leukapheresis

Centralized Manufacturing Facility
- Tumor Cell or Pathogen → Amplified RNA
- Monocytes
 - Partially Mature Dendritic Cell
- Formulated for Direct Injection
- Mature Dendritic Cell
- Partially Mature Dendritic Cell

In Body
- Mature Dendritic Cell → Lymph Node
- Mature Dendritic Cell + T-cell
- Antigen-Specific T-cell
- Pathogen-infected or tumor cell
Arcelis™ Platform in Three Clinical Settings

• Renal Cell Carcinoma (RCC)
 – Single agent
 – Combination with TKI

• Chronic Lymphocytic Leukemia (CLL)
 – Hematologic tumor

• Human Immunodeficiency Virus (HIV)
 – Infectious disease
Issue 1: Non-Clinical Package
Issue 1: Non-Clinical Package
Chemistry Manufacturing Controls

- Celltherapy not a “well defined drug”
- Product defined through process and controls
- Product Characterization
 - In-process QC
 - Sterility
 - Phenotypic Characterization
 - Viability
 - Stability
 - Release
 - Controlled Storage
 - Controlled Shipment
Issue 1: Non-Clinical Package
Chemistry Manufacturing Controls

• Translate academic bench research into a GMP compliant manufacturing process
 – Academia ➔ Development Stage Manufacturing
 – Local ➔ Central
 – Fresh Leukapheresis ➔ Day old
 – Conventional Cell-culture ➔ Functionally closed
 – Experience/Art ➔ Standardized/Reproducible
Current Processing Overview - Oncology

Tumor Collection
- Isolate Tumor Total RNA
- Synthesize, Amplify, & Purify cDNA
- Produce & Purify IVT RNA

Leukapheresis Collection
- Isolate Monocytes (Elutriation)
- Freeze Cells
- Cryogenic Storage
 - Thaw & Culture Cells to Produce Immature Dendritic Cells
 - Add Maturation Media
 - Culture
 - Harvest Mature Dendritic Cells & Load with RNA Antigen
 - Culture

Plasma Collection
- Plasma Heat Inactivation & Processing

Plasma Heat Inactivation & Processing
- Harvest, Formulate, & Freeze Final Product

Cellular Collection
- Harvest Mature Dendritic Cells & Load with RNA Antigen
Issue 1: Non-Clinical Package
Toxicology

- Autologous product
- Conventional test not applicable
- Lack of adequate animal models
- Academic Human Data specific to the product
 - Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 2003; 63(9): 2127-33

- Collective Published Evidence in the field
 - The first 1000 dendritic cell vaccinees. Cancer Invest. 2003; 21(6): 873-86
Issue 2: Phase 1 Considerations
Issue 2: Phase 1 Considerations

• Choice of clinical setting - RCC
 – Tumor type
 • “susceptible to immunotherapy”
 • Only curative treatment: High dose IL-2
 – Extent of tumor
 • Adjuvant vs. MRD vs. bulky
 • Primary removed per standard of care
 – Medical Need and Market Potential
 • 2004: chemo/radio-resistant, just IFN and IL-2
 – Pre-existing evidence
 • Immunological and clinical responses in metastatic renal cancer patients vaccinated with tumor RNA-transfected dendritic cells. Cancer Res. 2003; 63(9): 2127-33
 • Comparison of “academic” product and data with “corporate” data
Issue 2: Phase 1 Considerations

- Endpoints
 - Safety
 - Dose: Conventional dose escalation/MTD not applicable
 - General CTCAE
 - Special considerations re: auto-immunity
 - Lab panel: RF, ANA, etc.
 - Renal function: contra-lateral kidney in place
 - Biologic activity
 - Large volume IM blood draws for ELISpot
 - IM leukapheresis
 - Clinical activity
 - Indicator lesion(s) – RECIST
 - Survival endpoints
A PHASE I/II STUDY IN PATIENTS WITH STAGE IV RENAL CELL CARCINOMA (RCC) VACCINATED WITH AUTOLOGOUS DENDRITIC CELLS (DCS) TRANSFECTED WITH AUTOLOGOUS AMPLIFIED TUMOR-DERIVED mRNA

JJ Knox, DK Ornstein, WK Rathmell, MK Wong, M Jewett, LH Finke, F Miesowicz, CA Nicolette, G Batist
Completed Phase 1/2 RCC Trial - Design

Dosing Regimen:
• 5 x every 2 weeks
• 4 x every 4 weeks
• Every 12 weeks until progression
• Follow up for survival

1st line standard of care

Nephrectomy (Nx)

Recovery RNA prod.

DC prod.

Leukapheresis (Lx)

D

D

D

D

D

D

D

D

D
Phase I/II RCC Study - Safety

- No autoimmune AEs, No kidney function impairment
- No drug related SAEs and no drug related Grade III or IV AEs
- 88% of all AEs were Grade I or II
 - 54% of AEs were related to MB-002
 - 95% of MB-002 related AEs were due to injection site reactions

<table>
<thead>
<tr>
<th>Drug Related Adverse event</th>
<th>N=20</th>
</tr>
</thead>
<tbody>
<tr>
<td>General/administration site (i.e., injection site rxn, axillary pain, fatigue, flu-like illness)</td>
<td>70%</td>
</tr>
<tr>
<td>Skin/subcutaneous tissue (i.e., rash, pruritis, urticaria)</td>
<td>30%</td>
</tr>
<tr>
<td>Musculoskeletal (i.e., arthralgia, stiffness)</td>
<td>20%</td>
</tr>
<tr>
<td>Nervous system (i.e., headache)</td>
<td>10%</td>
</tr>
<tr>
<td>Lymph Node pain</td>
<td>5%</td>
</tr>
<tr>
<td>Pharyngolaryngeal pain</td>
<td>5%</td>
</tr>
</tbody>
</table>
Phase I/II RCC Study – Clinical Activity

• Clinical Endpoints
 – Predominantly stable disease
 – No confirmed objective response
 – Disease stabilization upon induction treatment in 5 out 6 subjects who experienced progression between Dx and start of treatment
Phase I/II RCC Study - Activity

- Immune Response (ELISPOT)
 - RCC patients were deficient in T cell IFN-γ and IL-2 production pre-treatment
 - Patients recovered some but not all immune deficiency
 - MB-002 treatment induced an increase in tumor antigen-specific* T cells in 8 of 12 Pts
 - 7 of 12 patients had response to more than one RCC biology relevant antigens post-treatment
RCC Study - Activity

<table>
<thead>
<tr>
<th></th>
<th>Arcelis</th>
<th>IFN alone</th>
<th>Nexavar</th>
<th>Sutent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Predominant MSKCC score</td>
<td>0-2</td>
<td>0-2</td>
<td>0-2</td>
<td>0-2</td>
</tr>
<tr>
<td>**Progression-free survival</td>
<td>6.9</td>
<td>4.1</td>
<td>5.7</td>
<td>11</td>
</tr>
<tr>
<td>(months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>**Median overall survival</td>
<td>24.7</td>
<td>11.1</td>
<td>17.8</td>
<td>TBD</td>
</tr>
<tr>
<td>(months)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Side-effect profile</td>
<td>No serious side effects</td>
<td>Fatigue, Depression</td>
<td>GI, skin toxicities</td>
<td>Hematologic, GI toxicities</td>
</tr>
</tbody>
</table>
Report Card: First Corporate Study

• Signals of clinical activity
 – PD to SD
 – PFS and OS

• Cytokine maturation product has incomplete biologic activity
 – IL-2 but no IFN-γ

• Feasibility
 – Central manufacturing
 – Central immune monitoring
Lessons Learned: First Corporate Study

- RCC induces profound immune suppression
- **Healthy volunteer material, although essential for process development and qualification work has limitations**
- Further translational research needed to tackle RCC impact on immune system
- **Further product optimization needed for full biologic activity in the RCC advanced stage background**
Issue 3: Translational Package
Issue 3: Translational Package

• Multiple procurement protocols –
 Non-Treatment Studies
 – Tissue
 – Blood draws & Leukapheresis
 • RCC: No systemic treatment, TKI
 • HIV: pre-ART and on ART
 • CLL: Leukemia cells vs. healthy monocytes

• PoP studies
 – VHL typing and immune response mapping
Issue 4: Product Optimization
Arcelis™
Three Generations of Products

1st Generation
Academic Product
- Total tumor RNA
- Passive transfection

2nd Generation
MB-002
- Amplified total tumor mRNA
- Active electroporation
- Cytokine maturation

3rd Generation
AGS-003
- Amplified total tumor mRNA
- Active electroporation
- PME CD40L maturation
- Elutra FT improved monocytes

Immature DCs
Mature DCs
Dendritic Cell – T-cell:
Interaction between innate and adaptive immunity facilitated by IL-12

The interaction between dendritic cells (DCs) and T cells involves three signals

Expert Reviews in Molecular Medicine © 2002 Cambridge University Press
Issue 4: Product Optimization

• Rational
 – Immune monitoring told us that cytokine maturation process does not yield the full biologic activity when applied to RCC subjects
 – Safety and clinical data quite encouraging

• Action taken
 – Take CD40L co-stimulation into the manufacturing process and optimize maturation and loading protocol
 – Cut turn around time
 – Move to functionally closed systems
 – Start robotized manufacturing program

• Implementation
 – Tech Transfer and qualification
 – Regulatory submission
Issue 5: Suitable Study Designs
Issue 5: Suitable Study Designs

1. Confirmation of biologic rational
 - When going back to the clinic, first confirm that with the PME-CD40L product shows desired biologic activity: IL-2 & IFN-γ by ELISpot
 - Confirm similar safety profile
 - Build on legacy data from previous studies

2. Conserve resources in a VC funded start-up environment
 a. Start with a small PoP sample with a strict go/no-go criterion for in vivo biologic activity
 b. Adapt to single stage or two stage phase 2 design

3. Collect information on accepted oncology clinical endpoints
 - RECIST endpoints
 - PFS, OS
AGS-003-004

A PHASE I/II STUDY TESTING THE BIOLOGIC ACTIVITY AND SAFETY OF AGS-003 AS AN IMMUNOTHERAPEUTIC IN SUBJECTS WITH NEWLY DIAGNOSED ADVANCED STAGE RENAL CELL CARCINOMA (RCC)
AGS-003-004
Study Overview

• Step I:
 – Objective:
 > 5/8 subjects with polyvalent IL-2 and IFN-γ immune monitoring AND safety similar to first study

• Step II:
 – Two stage design
 • 18 + 17
 – Objective:
 • 3 PR / 18
 • 5 PR / 35
 • Monitor pertinent accepted clinical endpoints
 • Continue thorough immune monitoring
SUMMARY OF IMMUNE MONITORING DATA

Pre-Vaccination

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>IFN-γ</th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>F</td>
<td>-</td>
<td>F,G</td>
<td>G,S,F</td>
<td>F</td>
<td>G,F,S</td>
<td>E,G</td>
<td>-</td>
</tr>
<tr>
<td>002</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>F,S</td>
<td>S</td>
<td>G,F</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>003</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>S,F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>F</td>
<td>S,F</td>
<td>S,F</td>
<td>-</td>
</tr>
<tr>
<td>005</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>S,G,T,F</td>
<td>S,G,F</td>
</tr>
</tbody>
</table>

Post-Vaccination

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>IFN-γ</th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-2</th>
<th>IFN-γ</th>
<th>IL-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>001</td>
<td>F</td>
<td>-</td>
<td>F,G</td>
<td>G,S,F</td>
<td>F</td>
<td>G,F,S</td>
<td>E,G</td>
<td>-</td>
</tr>
<tr>
<td>002</td>
<td>-</td>
<td>-</td>
<td>S</td>
<td>F,S</td>
<td>S</td>
<td>G,F</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>003</td>
<td>-</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>S,F</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>004</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>F</td>
<td>F</td>
<td>S,F</td>
<td>S,F</td>
<td>-</td>
</tr>
<tr>
<td>005</td>
<td>-</td>
<td>-</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>S,G,T,F</td>
<td>S,G,F</td>
</tr>
</tbody>
</table>

AGS-003

Immune Monitoring: First data with AGS-003

MB-002
AGS-003-004
Study Overview (Step II)

• Open-label, multi-center, two-stage, Phase I/II single agent clinical study
• Subjects with newly diagnosed metastatic clear cell RCC
• Primary endpoints:
 – Clinical response: PR and CR (RECIST)
 – Immune response
• Secondary endpoints:
 – Overall and progression free survival (RECIST)
 – AGS-003 production feasibility
 – Safety
 – Exploratory assays of T cell functionality and AGS-003 immunogenicity
Issue 6: Combination Therapy
Arcelis TKI Combination - Rationale

- SORAFENIB BUT NOT SUNITINIB INHIBITS HUMAN T-CELL FUNCTION (iSBTc Oct 2007)
- Supported by four independent groups
 - Immatics (Germany)
 - Cleveland Clinic
 - Dana Farber
 - Argos (leukapheresis material from TKI treated patients and in vitro studies)
- Arcelis / Sunitinib combination
 - First protocol to clear FDA and Health Canada
Dual Track Ph II Clinical Study Program:
- Newly diagnosed advanced stage RCC -

Single Agent first line (2 Stage “Simon Design”)

<table>
<thead>
<tr>
<th>Induction Phase</th>
<th>Booster Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx</td>
<td>Repeat every 3 months</td>
</tr>
<tr>
<td>AGS alone</td>
<td>Arcelis™ i.d.</td>
</tr>
<tr>
<td>AGS/TKI combo</td>
<td></td>
</tr>
</tbody>
</table>

Combination with Sunitinib first line (Singe stage design)

<table>
<thead>
<tr>
<th>Induction Phase</th>
<th>Booster Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nx</td>
<td>Repeat every 3 months</td>
</tr>
<tr>
<td>TKI alone</td>
<td>Sunitinib QD 4 weeks, 2 weeks off</td>
</tr>
<tr>
<td>AGS/TKI combo</td>
<td>Arcelis™ i.d.</td>
</tr>
</tbody>
</table>

Nx - nephrectomy - Arcelis™ Dosing

Argos Therapeutics
AGS-003-006

A Phase II Study Testing the Safety and Activity of AGS-003 as an Immunotherapeutic in Subjects with Newly Diagnosed Advanced Stage Renal Cell Carcinoma in Combination with Sunitinib
Arcelis TKI Combination - Design

- Multi-center single stage Phase II Study
- Centers in US and Canada
 - Plenty of very supportive interaction with FDA and Health Canada leading up to the IND and CTA submissions
- Newly diagnosed RCC or metachronous metastatic disease
 - Leukapheresis prior or after surgery
 - RNA from nephrectomy or metastectomy specimen
 - Cycled into Sunitinib (at reconstitution and prior to leuk drop)
- Requires a DMC
Issue 7: cGMP Manufacturing
Milestones in Process Development

1st Generation
Academic Product
- fresh monocytes
- open cell culture
- little GC

2nd Generation
MB-002
- day old monocytes
- flask culture
- establish GMP quality systems
- 12 weeks turn around
- establish clinical development & regulatory departments
- SOPs, practices, standards

3rd Generation
AGS-003
- PME CD40L process
- bag culture
- functionally closed systems

Robotized Automation
- more functionally closed systems
- modular, scalable manufacturing units

Immature DCs

Mature DCs
Automated Manufacturing Process

Clinical Site

Small tumor/virus sample → Leukapheresis

Centralized Manufacturing Facility

RNA Extraction/Amplification → Amplified RNA

Cellular Processing, Formulation, & Fill

Monocyte Isolation → Intradermal Injection
RNA Automated Processing
Conclusions
Case Studies: Lessons and Issues
Autologous RNA loaded DCs – Arcelis™

• Key Strategic Decisions
 – Are cooked fresh every morning
 – Stick to your biologic hypothesis
 – Ask every day: “what made us put this into the clinic?”

• Impact of Regulatory Interactions
 – Crucial and enabling

• Financial Considerations: Projected Costs vs. Reality
 – Cost: Follow press releases of companies in this space
 BUT
 – Personalized celltherapy can be done now!

• Lessons Learned
 – Immune monitoring
 – Limitations of healthy volunteer material
 – Single agent vs. combination in present day oncology
Acknowledgments

- Clinical Investigators
- Healthy volunteers and patients on the non-treatment protocols
 - Samples, leukaphereses
- Patients and their families on the clinical studies
- Scientific founders and investors
- iSBTc allowing us to present