IGFR Family Members are Immunologic Targets in Breast Cancer

Mary L. Disis, Vivian Goodell, Ekram Gad, Yushe Dang, Lupe Salazar, Jennifer Childs, Doreen Higgins, and Katy Park

Tumor Vaccine Group, University of Washington, Fred Hutchinson Cancer Research Center, Seattle, WA

Disclosures (M.L. Disis):
Consulting: Pfizer, Venti Pharmaceuticals, Dendreon, Center for Biomedical Communication
Speaker Bureau: Berlex
Grant Funding: Glaxo Smith Kline
IGFR1 Regulation of Breast Cancer

- Increased proliferation
- Decreased apoptosis
- Increased invasion
- Enhanced metastatic potential
- Plays a role in both hormone and trastuzumab resistance

Both IGFBP-2 and IGF1R proteins are overexpressed in breast cancer

Pollack M et al Nat Rev Ca, 2004
Breast Cancer Patients Can Have Immunity to IGFBP-2

Goodell and Park et al, 2007
Prediction of Potential Class II Epitopes

IGFBP-2 Protein Sequence

1. SYFPEITHI
2. Propred
3. MHC-Thread
4. Average Binding matrix method
5. Rankpep

Salazar et al, Clin Ca Res, 2003
Park et al, 2007
T Cell Response to IGFBP-2 Peptides

- 10/14 (71%) peptides immunogenic
- 36% in breast cancer patients
- 50% in volunteer age matched donors
- 14% in both

Park et al, 2007
Antigens spots / 250,000 PBMCs

* * p<0.05
** ** p<0.005

12/20 (60%)
No response

8/20 (40%)
Response

Park et al, 2007
Immunogenic IGFBP-2 Peptides are Highly Homologous with Bacterial Antigens

<table>
<thead>
<tr>
<th>IGFBP-2 Peptides</th>
<th>Homologous protein</th>
<th>Protein source of species</th>
<th>% Homology with mouse IGFBP-2</th>
</tr>
</thead>
<tbody>
<tr>
<td>p17-31</td>
<td>Candida albicans</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>p251-265</td>
<td>Pseudomonas aeruginosa</td>
<td>47</td>
<td>100</td>
</tr>
<tr>
<td>p190-204</td>
<td>Trypanosoma cruzi</td>
<td>73</td>
<td>93</td>
</tr>
<tr>
<td>p266-280</td>
<td>Lactobacillus reuteri</td>
<td>47</td>
<td>100</td>
</tr>
<tr>
<td>p291-305</td>
<td>Schistosoma japonicum</td>
<td>60</td>
<td>93</td>
</tr>
<tr>
<td>p8-22</td>
<td>Aspergillus oryzae</td>
<td>67</td>
<td>67</td>
</tr>
<tr>
<td>p235-249</td>
<td>Candida albicans</td>
<td>53</td>
<td>93</td>
</tr>
<tr>
<td>p164-178</td>
<td>Trypanosoma cruzi</td>
<td>53</td>
<td>86</td>
</tr>
<tr>
<td>p307-321</td>
<td>Staphylococcus aureus</td>
<td>47</td>
<td>80</td>
</tr>
<tr>
<td>p109-123</td>
<td>Pseudomonas fluorescens</td>
<td>53</td>
<td>80</td>
</tr>
<tr>
<td>p213-227</td>
<td>Aspergillus oryzae</td>
<td>67</td>
<td>93</td>
</tr>
<tr>
<td>p99-113</td>
<td>Human, murine, canine IGFBP3, 4, 5</td>
<td>67-80</td>
<td>80</td>
</tr>
<tr>
<td>p67-81</td>
<td>Propionibacterium acnes</td>
<td>60</td>
<td>0</td>
</tr>
<tr>
<td>p121-135</td>
<td>Pseudomonas aeruginosa</td>
<td>60</td>
<td>80</td>
</tr>
</tbody>
</table>

60% of responders “molecular mimicry”
IGFBP-2 Peptide Specific T Cell Lines Respond to Protein

p8-22 (67% homologous to mouse)

p251-265 (100% homologous to mouse)

p291-305 (93% homologous to mouse)

* p<0.05
** p<0.005

Park et al, 2007
neu Transgenic Mice: Model of HER2$^{\text{high}}$/ER$^{\text{low}}$ Breast Cancer

Expression of both neu and murine IGFBP-2 and IGF1R

Boggio et al, JEM, 1998
IGFBP-2 Specific T Cells Inhibit Tumor Growth

** p<0.005, n=5-6 mice/group
Acknowledgements

Tumor Vaccine Group
University of Washington

Adelbert Asirot
Miriam Bolding
Amy Chang
Jennifer Childs
Andrew Coveler
Yushe Dang
Jonathan DeLong
Patty Fintak
Ekram Gad
Mena Gad
Vivian Goodell
Heidi Gray
Doreen Higgins
Greg Holt

Vy Lai
Emily Larson
Steven La
Hailing Lu
Adam Morely
Katy Park
Eddy Park
Debora Quinn
Beck Royer
Lupe Salazar
Meredith Slota
Ron Swensen
Kathy Tietje
Cathy Yam

Collaborators
James Waisman and John Link, Breastlink
Nicole Urban and the Ovarian SPORE, FHCRC
Ted Gooley and Katherine Guthrie, FHCRC
Steve Plymate, UW
Keith Knutson, Mayo Clinic
Katy Park, Korea University

www.tumorvaccinegroup.org