Different flavors of regulatory T-cell subsets in patients with cancer and their role in tumor escape

Christoph Bergmann, Laura Strauss, Miroslav Szczepanski, Jonas T. Johnson, Stephan Lang, Theresa L. Whiteside

University of Essen, Germany
University of Pittsburgh Cancer Institute, USA

iSBTc 22nd Annual Meeting, 2007
Boston, USA
Treg subsets promote tumor escape from the host immune system

- Types of regulatory T cells:
 - **nTreg**: CD4⁺CD25^{high}Foxp3^{high}
 1. thymus derived
 2. suppress immune responses against “self” by mechanisms involving contact inhibition
 - **Tr1 cells**: CD4⁺CD25^{neg}IL10⁺TGF-β₁⁺
 1. induced in the periphery upon Ag presentation
 2. suppress immune responses through IL-10 and TGF-β₁ secretion

- an increased frequency of Treg in the tumor and in the peripheral circulation of patients with HNSCC was previously reported by us:
 - Albers AE *et al.*, Cancer Immunology Immunotherapy, 2005;54: 1072-81
 - Schaefer C *et al.*, British Journal of Cancer, 2005;92: 913-20

- In patients with ovarian cancer, accumulations of Treg at the tumor site were associated with shorter survival (Curiel, Nat Med 2004)
Methods

- **Cell source:** PBMC and TIL from HNSCC patients or PBMC from NC
- **Single-cell sorting:** $\text{CD}4^+\text{CD}25^{\text{high}}$
 $\text{CD}4^+\text{CD}25^{\text{neg}}$
- **Phenotype:** gate on $\text{CD}3^+\text{CD}4^+ (\text{Tr1})$ or $\text{CD}4^+\text{CD}25^{\text{high}} (\text{nTreg})$
 rare-event multicolor flow cytometry
 multicolor immunofluorescence microscopy
- **Suppressor function:**
 CFSE-labeled autologous $\text{CD}4^+\text{CD}25^{\text{neg}}$ responder cells (R) + Treg (S)
 added at 1S:1R, 1S:5R, 1S:10R ratios
- **Mechanisms of suppression:**
 - Transwell system
 - neutralizing antibody in suppressor assays
 - IL-10, TGF-β_1 in cells, in supernatants (Flow, Luminex)
- **Associations with the disease stage and/or progression**
CD25^{high} nTreg are expanded in HNSCC patients vs. NC

- **NC**
 - 1.7% CD25^{high}
 - 0.3% CD4

- **HNSCC**
 - 5% CD25^{high}
 - 2% CD4

Graph showing gated CD4^{+}CD25^{+} T cells with p<0.001.

- NC (n=15)
- PBMC (n=35)
- TIL (n=15)
Phenotypic characteristics of CD25^{high} nTreg in different compartments (HNSCC patients)

- **PBMC**
 - Gated on CD3+CD4+
 - IL-10
 - 31%
 - Foxp3
 - 70%
 - TGF-β1
 - 60%
 - CD4+CD25^{high} Foxp3+CD62L+CCR7+

- **TIL**
 - IL-10
 - 72%
 - Foxp3
 - 93%
 - TGF-β1
 - 96%
 - CD4+CD25^{high} Foxp3+GITR+IL-10+TGF-β1+
CD4⁺CD25⁺ nTreg among TIL at the tumor site
Suppressor function of CD4$^{+}$CD25$^{\text{high}}$ nTreg is cell contact- and cytokine- dependent
CD4^+CD25^{high} Treg in PBMC of HNSCC patients expand after oncologic therapy

- **% positive cells**
 - AD: n=10
 - NED: n=25
 - p<0.0059

- **% suppression of proliferation**
 - 1S:1R
 - 1S:5R
 - 1S:10R
 - p<0.0038
 - p<0.0011
Phenotypic characteristics of CD4$^+$ Tr1 cells in the circulation or TIL in HNSCC patients

PBMC: CD4$^+$CD25$^{\text{neg}}$Foxp3$^+$CD122$^+$IL-10$^+$TGF-$\beta_1$$^+$
TIL: CD4$^+$CD25$^{\text{neg}}$CD132$^+$IL-10$^+$TGF-$\beta_1$$^+$
Tr1 precursors *in situ* at the tumor site expressing suppressive molecules

CD4

CD132

TGF-β

overlay

x 600

CD4

CD25

Foxp3

overlay

x 600
Suppressor activity of Tr1 precursors or Tr1 cells is cytokine-dependent but cell contact-independent.
Marker expression and function of Tr1 cells in HNSCC patients is associated with the T stage

IL-10

TGF-β1

Foxp3

suppression

% positive cells

% suppression

T1/T2 T3/T4

T1/T2 T3/T4

T1/T2 T3/T4

T1/T2 T3/T4

p<0.0001

p=0.0004

p<0.0001

p=0.001

p=0.0004
Conclusions

- Treg in the blood and in the tumor of patients with HNSCC have a distinct phenotype and elevated suppressor activity relative to Treg in NC.
- Both nTreg and Tr1 assemble at the tumor site.
- nTreg-mediated suppression is contact dependent while that mediated by Tr1 is cytokine (IL-10 and TGF-β) dependent.

- In HNSCC patients:
 - nTreg expansion and regulatory activity is higher in NED than in AD.
 - Tr1 expansion and regulatory activity increase with tumor stage.
Acknowledgments

Dr. Laura Strauss, PhD, Postdoc
IMCPL Research and Clinical Laboratory group

Principle investigators (Germany):
PD Dr. Reinhard Zeidler, PhD, Munich
Prof. Dr. Stephan Lang, Essen

Prof. Dr. Theresa L. Whiteside
Director IMCPL, University of Pittsburgh, USA
Principle investigator