Adoptive T cell therapy: Grand Challenges and Opportunities

Carl June, M.D.
Professor of Pathology and Lab Medicine
Abramson Cancer Center
University of Pennsylvania

November 3, 2007
Overview

- Prime-boost strategies
- Lentiviral engineered T cell transfers
General Approaches for Adoptive T Cell Therapy

A. Harvest PBMC by apheresis

B. TIL cell isolation

PB T cell transfer

T cell in vitro activation and expansion

Lymphodepleted cancer patient

± HSC

Host condition chemotherapy ± radiotherapy

TIL cell transfer

TIL cell in vitro activation and expansion

Cancer patient

J Clin Invest 2007 117:1466-76
Human T Cell Adoptive Immunotherapy (Effectors)

- 2002: Lymphodepletion + TILs + high dose IL-2 for metastatic melanoma (Dudley et al, Science 2002; 298: 850)

Cell Culture Approaches for Adoptive T Cell Therapy

Starting T cell repertoire

- TILs or PBMCs

Antigen-specific stimulation

- Antigen and APC

Time: 6 w

Polyclonal stimulation

- Cyclic stimulation with CD3- and CD28-specific antibodies

Time: 7-10 d

- Functional development
 - Treg cell depletion
 - Genetic modification
 - T cell selection and/or expansion in the host
T Cell Culture Systems

- physiologic
- pharmacologic
T Cell Artificial APC Culture System

Artificial DC: Bead

Anti-CD3 Anti-CD28

TcR/CD4

CD28

CTLA4

Signal 1

Growth

Levine et al. Science. 1996; 272:1939
Clinical Scale T Cell Culture Process

Wave Bioreactors

Combination immunotherapy: vaccination and adoptive transfer as a “prime-boost”
Multiple Myeloma

- Plasma cell neoplasm characterized by serum monoclonal Ab, osteolytic lesions, pathological fractures, anemia, hypercalcemia
- 15% of hematologic malignancies
- Autologous transplants are highly effective for tumor reduction (first line therapy), but cures are infrequent.
- GVM/GVT: Allogeneic transplants can induce cures, but treatment-related risks are high.
Mobilization

Stem Cell Collection

High-dose Melphalan

Stem Cell Transplant

Immune Assessment Studies

T Cell Infusion (Day +12)

T Cell In Vitro Activation and Expansion to Infuse 10^{10} Cells

Randomize

Pneumococcal Vaccine (PCV)

T Cell Collection

Mobilization

Stem Cell Collection

High-dose Melphalan

Stem Cell Transplant

T Cell Infusion (Day +12)

PCV vaccinations (Days +14, +42, +90)

Immune Assessment Studies

Adoptive transfer of vaccine primed T cells augments immunity in lymphodepleted hosts:
Summary of first trial

- First successful randomized multicenter adoptive immunotherapy trial
- Accelerated recovery of CD4 and CD8 counts to normal levels by day 42 ($P=0.004$)
- Protective antibody levels established by day 30
- Improved proliferative capacity of CD4 T cells to vaccine carrier antigen ($P<0.01$) and to Staphylococcal enterotoxin B ($P=0.004$)

=> Adoptive transfer of vaccine primed T cells appears to facilitate establishment of CD4 T central memory cells

Phase I/II Combination Immunotherapy after ASCT for Advanced Myeloma of hTERT/Survivin Vaccination Followed by Adoptive Transfer of Vaccine-Primed Autologous T cells

- Eligibility
- Tumor Restaging
- Day –28 Apheresis
- Day –14 Priming Vaccine
- Day 0 Lymphodepletion Chemotherapy
- Day 2 Booster Vaccines
- Day 2 T cell transfer
- T cell in vitro activation and expansion
- Immunoassessment
Phase I/II Combination Immunotherapy after ASCT for Advanced Myeloma of hTERT/Survivin Vaccination Followed by Adoptive Transfer of Vaccine-Primed Autologous T cells

PIs: Aaron Rapoport, U Maryland
Edward Stadtmauer, U Pennsylvania

INDs:
Vaccine (Vonderheide)
T cells (June)

Design: Randomized (biologic) comparison
1) Autologous T cells day 2 post ASCT
2) Vaccine + vaccine primed T cells

Status:
Protocol open to accrual
18 patients enrolled
SUMMARY OF MYELOMA TRIAL PATIENTS

As of October, 2007

<table>
<thead>
<tr>
<th></th>
<th>ID #</th>
<th>Age on Study</th>
<th>R</th>
<th>S</th>
<th>Study Arm</th>
<th>On Study Date</th>
<th># hTERT VaccinesReceived</th>
<th>Day 0</th>
<th>T cell Infusion</th>
<th>T cell Dose</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MGCC610-MD001</td>
<td>55</td>
<td>AA</td>
<td>M</td>
<td>A</td>
<td>12/18/06</td>
<td>4</td>
<td>1/30/2007</td>
<td>02/01/07</td>
<td>2.63E+10</td>
</tr>
<tr>
<td>2</td>
<td>MGCC610-MD002</td>
<td>67</td>
<td>C</td>
<td>F</td>
<td>B</td>
<td>01/05/07</td>
<td>NA</td>
<td>02/21/07</td>
<td>02/23/07</td>
<td>3.75E+10</td>
</tr>
<tr>
<td>3</td>
<td>MGCC610-MD003</td>
<td>51</td>
<td>AA</td>
<td>F</td>
<td>A</td>
<td>12/26/06</td>
<td>4</td>
<td>2/12/2007</td>
<td>02/14/07</td>
<td>3.38E+10</td>
</tr>
<tr>
<td>4</td>
<td>MGCC610-MD004</td>
<td>57</td>
<td>C</td>
<td>M</td>
<td>B</td>
<td>03/27/07</td>
<td>NA</td>
<td>5/5/2007</td>
<td>05/10/07</td>
<td>4.18E+10</td>
</tr>
<tr>
<td>5</td>
<td>MGCC610-MD005</td>
<td>37</td>
<td>C</td>
<td>F</td>
<td>B</td>
<td>05/15/07</td>
<td>NA</td>
<td>6/26/2007</td>
<td>06/28/07</td>
<td>3.80E+10</td>
</tr>
<tr>
<td>6</td>
<td>MGCC610-MD006</td>
<td>51</td>
<td>A</td>
<td>F</td>
<td>A</td>
<td>05/25/07</td>
<td>3</td>
<td>7/11/2007</td>
<td>07/12/07</td>
<td>3.36E+10</td>
</tr>
<tr>
<td>7</td>
<td>MGCC610-MD007</td>
<td>60</td>
<td>C</td>
<td>F</td>
<td>B</td>
<td>12/26/06</td>
<td>NA</td>
<td>8/7/2007</td>
<td>08/09/07</td>
<td>4.81E+10</td>
</tr>
<tr>
<td>8</td>
<td>UPCC13406-01</td>
<td>55</td>
<td>C</td>
<td>M</td>
<td>A</td>
<td>04/18/07</td>
<td>4</td>
<td>6/20/07</td>
<td>06/22/07</td>
<td>4.29E+10</td>
</tr>
<tr>
<td>9</td>
<td>UPCC13406-02</td>
<td>45</td>
<td>C</td>
<td>M</td>
<td>A</td>
<td>05/30/07</td>
<td>4</td>
<td>7/24/07</td>
<td>07/26/07</td>
<td>4.41E+10</td>
</tr>
<tr>
<td>10</td>
<td>UPCC13406-03</td>
<td>61</td>
<td>AA</td>
<td>M</td>
<td>B</td>
<td>05/02/07</td>
<td>NA</td>
<td>7/17/07</td>
<td>07/19/07</td>
<td>5.00E+10</td>
</tr>
<tr>
<td>11</td>
<td>UPCC13406-04</td>
<td>47</td>
<td>C</td>
<td>F</td>
<td>B</td>
<td>06/13/07</td>
<td>NA</td>
<td>7/31/07</td>
<td>08/02/07</td>
<td>3.86E+10</td>
</tr>
</tbody>
</table>
hTERT vaccine + day 2 T cell trial: Interim Summary

- 18 patients enrolled
- Safety to date: no HSC engraftment issues
- Unexpected adverse event:
 - T cell engraftment syndrome in 6 patients (skin rash, fever, diarrhea)
 - Lymphocytosis: sustained in many patients
- Above implies major schedule dependent (day 2 vs day 12) difference in T cell engraftment and effector functions
T Cell Expansion in Lymphopenic Hosts

Enhanced CD8 Effector Function?

Potential mechanisms:
- Role of lymphopenia
- Depletion of Tregs, NKT, B cells?
- Removal of cytokine sinks?
 - IL-2 vs IL-7/-15/-21 regulation
- Stem cell push?

Day 12 p HSC

- NKT
- APC
- Tumor
- Treg
- Teff
- iMC
- Macrophage

Day 2 p HSC

- APC
- Tumor
- Teff
- IL-7/15/17/21?
- HSC?

J Clin Invest. 2007 117:492-501
Rationale for Adoptive T Cell Immunotherapy with Genetically Engineered T Cells

<table>
<thead>
<tr>
<th>Natural T Cells</th>
<th>Gene-Modified T cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety profile established</td>
<td>Safety profile scant</td>
</tr>
<tr>
<td>T cells have the potential to target cancer stem cells</td>
<td>Repertoire limitations can be overcome</td>
</tr>
<tr>
<td>Anecdotal responses observed to immunotherapy</td>
<td>Anecdotal responses observed in immunotherapy</td>
</tr>
<tr>
<td>Repertoire may be inadequate or lacking</td>
<td>Efficient gene transfer required</td>
</tr>
<tr>
<td>Immunosenescence a major issue in humans</td>
<td>Efficient T cell culture required</td>
</tr>
</tbody>
</table>
Oncoretroviral vs. Lentiviral vectors

Oncoretroviral vectors

- Only transduces dividing cells
- Insertional mutagenesis
- T cell leukemia in SCID (cγ chain)

Potential advantages of HIV-based lentiviral vectors

- High efficiency transduction
- Long term expression ⇒ less susceptible to silencing
- Not yet tested in humans
First in Humans Test of Lentiviral Vectors

Levine et al. PNAS 2006

Kohn, Nat Biotech, 2007
• Objectives: determine safety and trafficking of multiple infusions of CD4 T cells transduced with anti-sense HIV
• Status
 - study opened in August 2006
 - 11 patients enrolled and 9 patients infused
Lentivector Persistence in CD4 Cells

- Long term persistence of non-selecting vector
- No cytokine support
- VSV-g immunogenicity, 4 of 7 pts to date

Multiple infusions

Single infusion:
$T_\frac{1}{2} = 23.5 \pm 7.7$ days

LOD = 200
Memory Stem Cell Hypothesis

- Studies in mice:
 - Fearon, *Science*. 293: 248
 - Zhang, *Nat Med*. 11: 1299
- Implications for human T cell gene therapy
Lessons from the First Lentiviral Gene Transfer Trial - HIV

- HIV based vectors appear safe in 13 of 13 patients treated to date
- Promising engraftment with genetically engineered CD4 T cells
- No evidence for insertional oncogenesis
- HIV based vectors have promise for HIV and cancer therapy

Levine et al. PNAS 2006
Strategies to Improve Adoptive Transfer of Tumor Specific T Cells Using Genetic Modification

Specificity
- Chimeric antigen receptors
 - Endogenous TCR
 - CD19 scFv
 - CD19
- Cloned TCR

Survival
- Costimulatory proteins
 - IL-2R
 - IL-2
- Chimeric cytokine receptors
 - GM-CSF

Localization
- Chemokine receptors
 - CCR14
- Chemokine gradient
 - Tumor

Effector Function
- Blockade of inhibitory proteins
 - Cytokines
 - Perforin

Ho, Greenberg et al, Cancer Cell (2003)
Redirected T Cell Approaches with engineered T cells
Lentiviral Redirected T Cells Targeting CD19 or Mesothelin

Anti-meso /CD19 scFv

Carmine Carpenito
Michael Milone
Mesothelin as a tumor target for EOC

- 40 kDa gpi linked surface glycoprotein that is widely expressed in EOC, mesothelioma and pancreatic cancers (Hassan and Pastan, Clin Can Res 2004)
 - Restricted expression in normal cells

- **Mesothelin cell biology**
 - Unique transcripts in serum of EOC patients (Scholler et al, PNAS 1999)
 - Mesothelin binds to Muc16/ CA125 (Rump et al, JBC 2004)

- **Mesothelin subject to immunosurveillance**
 - can be recognized by HLA class I restricted CD8 T cells (Thomas et al, JEM 2004)
 - 40% of patients with EOC have antibodies to mesothelin (Ho et al, Clin Cancer Res 2005; 129:515)
Mesothelin as a Target for Adoptive Transfer Therapy

- 40kDa gpi linked surface glycoprotein that is widely expressed in EOC, mesothelioma and pancreatic cancers
- Restricted expression in normal cells

Mesothelin cell biology
meso−/− mice are healthy and fertile
- Possible role in adhesion and metastasis
- Binds CA125 (muc16): large protein expressed by OvCa and normal mesothelial cells

Gubbels et al
Mol Cancer 5(1):50
Carmine Carpenito
Michael Milone

Lentiviral Redirected T Cells Targeting Mesothelin

Expression: Primary T Cells

C

non-transduced SS1-BBz SS1-CD28z

SS1-CD28BBz SS1-z SS1-Δz

FL4

FL4

SCFv-PE (FL2)

SS1-scFv

CD8α hinge

CD8α TM

CD28 TM

4-1BB

CD28

CD3ζ
Mesothelin Redirected T Cells Kill Primary Ovarian and Mesothelioma Cells In Vitro

Log fluorescence intensity

Cell counts

% lysis

E:T ratio

Carmine Carpenito
CD8 T cells expressing $\text{scFv}^{\text{meso}}$ kill pat108.gfp cells at low E:T ratios

Day 0: 1 T cell added per 20 tumor cells
Day 2: Photograph
Co-stimulatory Domains Induce Cytokine Secretion in CD8 T Cells in Response to Mesothelin

Relative IL-2 mRNA expression

Meso-trunc Meso-zeta Meso-bb-z Meso-28-z

CD8 T cell population
SCID-Winn Assays: Summary

T cells expressing scFv^{meso} are able to kill mesothelin^{+} tumor cells

T cells expressing scFv^{CD19} do not kill mesothelin^{+} tumor cells at E:T ratio (1:2), redirected T cells inhibit A431.meso tumor cells (serial killing)

combine 1 million A431 or A431.meso cells with varying numbers of T:scFv^{meso}Zeta and inject into opposite flanks of Rag2 \(\gamma^-/- \) mice
Human T cell Absolute Counts in Blood

CD4 T cells
CD8 T cells

A431
A431.meso

day 0: inject A431 tumor cells s.c.
day 4: inject scFv^{meso} T cells i.v.
Specific Killing of Mesothelin Tumor in NOD-SCID-β2−/− Mice: Day 4 Challenge

GFP Transduced T Cells

scFv Meso:CD28/4-1BB/CD3ζ T Cells

5 mice / gp
1x10⁶ A431 cells
0.5x10⁶ T cells day 4
Meso Redirected T Cells: In Vivo Killing of Large Established Primary Mesothelioma Xenografts: Day 45 Challenge

- saline
- gfp
- SS1-trncZ
- SS1-Zeta
- SS1-CD28z
- SS1-BBz
- SS1-tpr
- SS1-CD28z

IT injection 10e6 T bodies
N=8 mice / gp
Summary - II

• Lentiviral vectors provide an efficient means to engineer human T cells with artificial antigen receptors
• CD8+ T cells armed with mesothelin-specific T-bodies efficiently lyse mesothelin + tumor cells including primary tumor cells
• T-bodies can trigger T cell proliferation
• Addition of co-stimulatory signal transduction domains to TCR-ζ containing T bodies enhance cytokine production
• Human T cells engineered with a minimal anti-meso T-body can suppress the development of tumors in a NOD-SCID-β2-/- model of ovarian cancer
• anti-Meso T cells eradicate vascularized (45 days) xenografts in humanized NOG mice
Efficacy of anti-CD19 Lentiviral Redirected T Cells
Day 14 Challenge Model w Primary Leukemia Xenografts

- 3x10^6 gene-modified T cells/mouse
- ALL and T cell enumeration in blood performed by BD TruCount
UPenn Protocol #805313: Competitive Repopulation Strategy to Test Signaling Domains in Redirected Autologous T Cells

Leukapheresis:
patient with CD19+ leukemia or lymphoma

CD3 enrichment, parallel T body transduction and expansion

Combine RAT-19 cells during infusion

Normalize RAT-19 cell numbers

CD19-CD3ζ-4-1BB

Baseline (T=20min)

T cell genotype
- Wild type
- RAT-19
- CD3ζ-4-1BB
- RAT-19 CD3ζ

Outcomes (T=28 days)

CD19-CD3ζ-4-1BB better

OR

No difference

Monitor expansion and persistence (blood) and trafficking (bone marrow)
Conditionally Retargeting T bodies using "Cis" and "Trans" Costimulatory Domains

\[\text{\(\alpha_{CD19}\) scFv} \quad \text{\(\alpha_{Meso}\) scFv} \quad \text{scFv} \]

TCR\(\zeta\)ta
tail

\text{Signal 1}

\text{CD28 tail}

\text{Signal 2}

\text{Signal 1 + 2 "cis"}

Chrystal Paulos
High transduction efficiency can be achieved in human CD4 T cells using lentiviral vector CD28 and TCR Zeta constructs.

Single and double transduction constructs: surface expression 67-97% efficacy.
Retention of TCR induced proliferation, and absence of autonomous proliferation Directed by "Cis" and "Trans" Costimulatory Domains

Target: Media alone

Beads alone

Naked K562

Log CD4 T cells (1e6)

Days post re-stimulation

Chrystal Paulos
Selective Proliferation Directed by “Cis” and “Trans” Costimulatory Domains

Target: CD19 K562

Mesothelin K562

CD19 K562 + Meso K562

Days post re-stimulation
Towards Personalized Medicine: T Cell Adoptive Transfer Immunotherapies

- T cells have a number of properties to be the elusive “weapon of mass destruction” for cancer and chronic infections
 - Targeting/trafficking to tumor and sites of infection demonstrated
 - Long term persistence and stem cell like qualities of central memory T cells
 - Strategies to enhance function of T cells by genetic engineering
- Barriers to widespread utilization
 - Efficient T cell culture systems
 - Efficient T cell engineering
Enthusiasm for T Cell Gene Therapy

Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity
(chimeric genes/antibody variable region)

ADA Correction

↓ Engraftment
↑ Trafficking

X-SCID (cγ chain) Correction

Jesse Gelsinger

NCI TCR Trial

? Lentiviral Vectors

Lentiviral Vectors

High

None

Some

1989
1995
1997
1999
2001
2002
2006
Collaborators and Acknowledgements

U. Penn
Bruce Levine
Edward Stadtmauer
Richard Carroll
Megan Suhoski
Carmine Carpenito
Michael Milone
Chrystal Paulos
Victoria Tai
Nicole Aqui
Robert Vonderheide

Penn Center for Ovarian Cancer
George Coukos

U. Maryland
Aaron Rapoport
Alan Cross
Dean Mann

NCI
Ira Pastan

Johns Hopkins
Elizabeth Jaffee

Support
NIH NCI
Leukemia & Lymphoma Society
Alliance for Cancer Gene Therapy