Using Gene Transfer to Retarget Cytotoxic T lymphocytes

Malcolm Brenner
Epstein Barr Virus

• Infects >90% population
• Acute infection is followed by life-long latency
• Expression of limited array of viral latency proteins
• Usually benign
Epstein Barr Virus

- Infects >90% population
- Acute infection is followed by life-long latency
- Expression of limited array of viral latency proteins
- Usually benign
- Latent virus can produce malignant transformation in B/T lymphocytes and epithelial cells
EBV-associated Malignancies

Latency/Malignancy

Type 3
- Post transplant lymphoma
- HIV-associated lymphoma

Type 2
- Hodgkin’s lymphoma
- NHL
- Nasopharyngeal carcinoma

Type 1
- Burkitt’s lymphoma
- Gastric adenocarcinoma

Gene Expression

- EBNA1
- EBNA1LP
- LMP2
- LMP1
- EBNAs 2, 3a, 3b, 3c
- LP

Immunogenicity
Types of EBV Latency

Type 3 Latency
Post Transplant Lymphoma
5-25% of T cell depleted SCT recipients
Generation of EBV Specific Cytotoxic T lymphocytes (CTLs)

Step 1: LCL generation
- 4-6 weeks
- EBV
- LCL

Step 2: CTL expansion
- 4-7 weeks
- IL-2
- PBMC

Step 3: QA/QC
- Sterility
- HLA type
- Phenotype
- Cytotoxicity
Successful T Cell Therapy of Cancer

Minimal Requirements

Effector Cells need to be

- Plentiful (Proliferate)
- Persistent
- Present in tumor
Generation of EBV Specific Cytotoxic T lymphocytes (CTLs)

Step 1: LCL generation
- 4-6 weeks
- EBV
- LCL

Step 2: CTL expansion
- 4-7 weeks
- IL-2
- PBMC

Step 3: QA/QC
- Sterility
- HLA type
- Phenotype
- Cytotoxicity

Gene Mark neo-MVV
PCR for Neo shows CTL become plentiful

<table>
<thead>
<tr>
<th>UPN</th>
<th>Pre</th>
<th>Post</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>293</td>
<td></td>
<td></td>
<td>0%</td>
</tr>
<tr>
<td>227</td>
<td></td>
<td></td>
<td>0.01%</td>
</tr>
<tr>
<td>282</td>
<td></td>
<td></td>
<td>0.1%</td>
</tr>
<tr>
<td>239</td>
<td></td>
<td></td>
<td>1%</td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td>10%</td>
</tr>
</tbody>
</table>
Marking Detection – CTLs Persist

Marking detection for each patient over time
Donor-derived CTLs *Present at tumor site*

Marked CTL by in situ PCR at tumor site
CTLs for EBV PTLD

Improving CTL Therapy – Attack Targets that are Present

Type 2
Hodgkin's disease
Nasopharyngeal carcinoma

EBNA-1
LMP 1
LMP 2
Increasing LMP2 tetramer-positive cells using Ad-LMP2 vector

LMP2 tetramers
FLY
LLW
EBNA3C tetramer
RRI

LCL
CTL
Recombinant Ad5f35 with LMP2
Chimeric Ad5F35 LMP2
Over-expression and innate immune response make a weak antigen strong

Bollard et al, J Immunother 2004
Increasing LMP2 tetramer-positive cells using Ad-LMP2 vector

LMP2 tetramers
- **FLY**
 - LMP2 CTL: 5.93%
 - LCL CTL: 0.01%

- **LLW**
 - LMP2 CTL: 2.38%
 - LCL CTL: 0.02%

EBNA3C tetramer
- **RRI**
 - LMP2 CTL: 0.11%
 - LCL CTL: 12%
Resolution of Bony Lesions In HD

Pre CTL

3mth Post CTL
Complete Radiological Response
EBV+ve NK-T NHL

Pre CTL

Post CTL

EBV DNA

EBV T cells

Graph showing SFC per 10^5 cells and EBV copies/ug DNA over time (pre, 1wk, 2wks, wk6).
Immunohistochemistry
Left Carytenoid

Pre CTL

Post CTL

EBER 10x

CD4 40x
CTL Studies targeting EBV antigens in EBV+ve lymphoma

42 Patients with Active Rel. Disease

- CR 17 (41%)
- PR 6 (15%)
- SD 7 (17%)
- NR 12 (28%)
NPC Clinical Response post EBV-CTL: Reduction of FDG uptake in metastases
Complete Remission of Refractory NPC

Pre-CTL

Post-CTL

Absent uptake of F-18 fluorodeoxyglucose (FDG) 8 weeks post CD45 MAbs and EBV-CTL infusion
Complete Remission of Refractory NPC

Pre CTL: EBV pos Post CTL: EBV neg
Conclusions

- Anti-tumor activity seen in 12/24 patients with active NPC treated with EBV-CTL

No Response

Complete Response (6)

Partial Response (2)

Stable Disease (4)
Broadening the Applicability of EBV-CTLs

• Manufacturing is robust (98% success rate in >200 clinical lines)

• “Exportable” concept

 O’Reilly; MSKK Khanna; QIMR, Brisbane
 Lucas; UAB Volk; Charite, Berlin
 Wang; HMS Amrolia: ICH/GOS, London
 Commoli; Pavia Crawford; Univ. Edinburgh
Broadening the Applicability of EBV-CTLs

• Manufacturing is robust (98% success rate in >200 clinical lines)
• “Exportable Concept”
• Accelerate and simplify production –
 \(\text{Was } >10\text{wks: Now } <10 \text{ days} \)
• Increase range of diseases to be treated
Chimeric Antigen Receptor (CAR) Expression in T cells

Monoclonal Antibody

HRS3-scFv

Linker

Spacer

Tumor Ag

Tumor

T Cell

TcR-complex

αβ

γεε δζζ
Chimeric Primary T cells (CAR-PTC)

- Recognize unmodified tumor antigens in MHC unrestricted manner- bypass many tumor immune evasion strategies
Chimeric Primary T cells (CAR-PTC)

- Recognize unmodified tumor antigens in MHC unrestricted manner- bypass many tumor immune evasion strategies
- Tumor cells have other problems in presenting antigen (e.g. lack co-stimulator molecules, inhibit induction of effector phenotype)
Chimeric Primary T cells (CAR-PTC)

- Recognize unmodified tumor antigens in MHC unrestricted manner- bypass many tumor immune evasion strategies
- Tumor cells have other problems in presenting antigen (e.g. lack co-stimulator molecules, inhibit induction of effector phenotype)
- May be expressing receptor in Treg
Chimeric Primary T cells (CAR-PTC)

- Recognize unmodified tumor antigens in MHC unrestricted manner- bypass many tumor immune evasion strategies
- Tumor cells have other problems in presenting antigen (e.g. lack co-stimulator molecules, inhibit induction of effector phenotype)
- May be expressing receptor in Treg
- Consequence – poor in vivo persistence, expansion and function
Overcoming poor costimulation to CAR-PTC

- Incorporate more co-stimulatory domains

CD28 and OX40 (Pule et al. Mol Therapy 2005)
Chimeric receptor-mediated interaction between T cell and tumor cell

Tumor cell

Complete signal?

ICOS
CD28
CD4, CD8
OX-40R
4-1BB
LFA-1
LFA-2

B7-H3?
B7-2?
B7-1?
LICOS?
OX-40?
4-1BBL?
ICAM-1?
CD58?
CD59?
Using EBV Infected Target Cells as source of co-stimulation

• EBV targets express all relevant co-stimulator molecules and are present lifelong

• EBV-CTL
 – Expand in vivo
 – Have effector phenotype
 – Persist long term
 – Eradicate bulky tumors
EBV-infected B cell

EBV-specific CD4+ T cell

EBV peptides on MHC class II

EBV peptides on MHC class I

EBV-specific CD8 T cell

Tumor Ag specific

Chimeric TCR

Native TCR

EBV-specific
Neuroblastoma

- Commonest extracranial solid tumor of childhood
- May respond to intensive therapies
- High relapse risk in advanced disease
- Neural crest tumor and expresses many developmental antigens
- Lack MHC molecules – problem for CTL
Neuroblastoma Target antigen: GD2

- Disialoganglioside expressed in tumors of neuroectodermal origin
- Expressed at high density on almost all neuroblastoma cells
- Poorly expressed or absent from most normal tissue
- MAb has been used with clinical responses
Killing of Neuroblastoma and Autologous LCL by PTC/CTL

% transduction

GD2 CTL GD2 PTC

Neuroblasts Auto EBV-LCL
Are CAR-CTL better than CAR-PTC in neuroblastoma patients?

Transduce patient PTC and CTL with a vector encoding identical receptor but distinct oligonucleotide for each population.
Vectors in Clinical Study

Patient One

LTR GD2S GD2 LTR

Primary T cell

Patient Two

LTR GD2L GD2 LTR

EBV specific CTL

LTR GD2S GD2 LTR
Phase I Dose Escalation Study

- Relapsed/Refractory or incompletely treated NB patients
- Evaluate safety of GD2 redirected T-cells (T-GD2)/EBV CTL (CTL-GD2)
- Compare persistence of CTL-GD2 and T-GD2
- Evaluate clinical outcome
Patient Details

- 11 Patients with relapsed disease
- Age 3yrs - 15 yrs (Median 10yrs)
- 3 Received dose level 1 \((10^7)\)
- 6 received dose level 2 \((5 \times 10^7)\)
- 2 received dose level 3 \((10^8)\)
Clinical Product Transduction Efficiency

EBV-CTLs PBTs
Phenotype of cell product

EBV-CTLs

CD4

CD8

CD56

PBTs

CD4

CD8

CD56
T-GD2 Cells Kill Neuroblastoma In-Vitro; No Killing Of Autologous LCL

% Cytotoxicity

T-GD2

NB Cell Line

Auto LCL
CTL-GD2 Kill Both Neuroblastoma And Autologous LCL

![Graph showing cytotoxicity of CTL-GD2 and T-GD2 against NB Cell Line and Auto LCL. The graph indicates higher cytotoxicity for CTL-GD2 compared to T-GD2.]
Safety of Infusions

No severe adverse effects attributable to study agent
What should CAR-EBV CTL do?

• Persist longer at higher levels than CAR-Primary T cells (PTC)
Percent Gene Modified EBV CTL or Primary T cells in PBMNC

Mean % infused cells detected

T-GD2

1 Day 1 week 2 weeks 4 weeks 6 weeks
Percent gene modified EBV CTL or Primary T Cells in MNC

Mean % infused cells detected

- CTL-GD2
- T-GD2

Day, 1 week, 2 weeks, 4 weeks, 6 weeks
Successful T Cell Therapy of Cancer

Minimal Requirements

Effectector Cells need to be

- Plentiful (Proliferate)
- Persistent
- Present in tumor
Successful T Cell Therapy of Cancer

Minimal Requirements

Effector Cells need to be

- Plentiful (Proliferate)
- Persistent
- Present in tumor
Increase persistence

- Depletion of lymphocytes enhances homeostatic proliferation of transferred cells
- Autografting is standard of care for high risk Neuroblastoma
- Give modified CTL after autograft
Successful T Cell Therapy of Cancer

Minimal Requirements

Effector Cells need to be

- Plentiful (Proliferate)
- Persistent
- Present in tumor
Increase Persistence

• TGFβ secreted by many tumors including HD and neuroblastoma
• Transduction of Dominant Negative receptor blocks TGFβR trimer formation and downregulation of CTL in vitro/vivo
• Clinical trial of DNR approved and awaiting final vector release
Successful T Cell Therapy of Cancer

Minimal Requirements

Effector Cells need to be

- Plentiful (Proliferate)
- Persistent
- Present in tumor
Expression of Chemokine Receptors on EBV-Specific CTL

Chemokine Receptor Expression

Chemokine
- CCL2
- CCL4
- CCL5
- CCL21
- CXCL12

Chemokine Receptor
- CCR2
- CCR4
- CCR5
- CCR7
- CXCR4

CD4
CD8
CCR2b-T Cells Homing

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>NT CCR2b</td>
<td>NT CCR2b</td>
</tr>
</tbody>
</table>

ROI 1=16335
ROI 2=19167
ROI 1=5907.3
ROI 2=20348
Summary
Gene Transfer to retarget CTLs

- Retroviral gene marking confirms EBV-CTL’s effective against post-transplant lymphoma.
- Adviral vectors enhance specificity of CTL for weak tumor antigens – HD and NPC
- CAR gene transfer allows CTL to effectively bear alternative anti-tumor specificities- Solid tumors
- Further engineering should enhance clinical efficacy
Immunotherapy

TRL Laboratories
Eric Yvon
Satoshi Takahashi
Gianpietro Dotti
Donna Rill
Ettore Biagi

Collaborators
Si Chen
David Spencer
Persis Amrolia
Rongfu Wang
Vicky Gresik

GMP Laboratory
Adrian Gee
Zhuyong Mei

Clinical Research
Bambi Grilley
Cynthia Boudreaux
Florence Noel
Seanda Blocker
Kim East
Diana Havlik-Cooper
Yu-Feng Lin
Vicky Torrano

CTL Laboratory
Helen Huls
Tessie Lopez
Karen Nunez-Wallace
Elizabeth Buza
Maheshi Ratnayake

HLA Laboratory
Geoff Land
Fellows
Alexandra Rousseau
Taka Okamura

Martin Pule
Ann Leen
Nabil Ahmed
Ken Heym
Tim Lee
Heidi Russell

Cliona Rooney
Helen Heslop
Stephen Gottschalk
Catherine Bollard
Claudia Rossig
Doug Myers
Karin Straathof
Barbara Savoldo
Aaron Foster