Regulating the Regulators for Cancer Immunotherapy: LAG-3 Finally Catches Up

Drew Pardoll
Sidney Kimmel Cancer Center
Johns Hopkins
The hostile immune microenvironment within a tumor

- Tumor
 - Stat3
 - B7-H1
 - B7-H4
 - MΦ/MSC/iMC
 - NO
 - A2aR
 - B7-H4
 - adenosine
 - VEGF, IL6, IL10, IL23

- NK cell
 - Stat3
 - Lytic activity
 - degranulation
 - granulocyte

- CD4 T cell
 - FoxP3
 - Treg
 - TGFβ
 - IL10
 - LAG-3

- DC
 - Stat3
 - maturation
 - IL-23

- Tumor-specific CTL
 - Stat3
 - maturation
 - IL-23

- MSC/iMC
 - B7-H1
 - IL-23

- PDC/VEGF, IL6, IL10, IL23

- TGFβ
Combinatorial immune therapies to hit distinct steps in the evolution of antitumor immunity

- Vaccines
 - TLR agonists
 - Costimulators

- Blockade of Immunologic Check Points
 - CTLA-4 blockade
 - B7-H1/4, PD1 blockade
 - STAT-3 blockade

- Blockade of Regulatory T cells

- Manipulation of the Tumor Microenvironment
 - Combinatorial immune therapies to hit distinct steps in the evolution of antitumor immunity

↑Ag Presentation By Appropriately Activated DCs + ↑Costimulation
Peripheral T cell tolerance

Activation

(γ-IFN, CTL activity)

Tolerance

(Anergy)

Regulatory T cell

FoxP3
LAG-3
GITR
A2aR

Naïve T cell

TCR

APC

MHC-Ag

signal 1

signal 2

B7

CD28

Activation

(Anergy)
The Probasin – Hemaglutinin (ProHA) Transgenic Mouse

HA wt

HAs

HAF
The ProHA x TRAMP Mouse (ProTRAMP)
A tumor tolerance model

- ProSV40 – Oncogenic
- ProHA – A Tumor / and Tissue Specific Antigen
- Disease grossly identical to TRAMP
- 12’th Generation Intercross onto B10.D2
- HA-specific CD4 and CD8 TCR transgenic T cells transferred into ProTRAMP are TOLERIZED. HA-specific CD4s become Treg
Mouse model → Immunogenomics → Therapeutic Ab production

Back to the mouse model to test therapeutic Ab
Genes Involved in Expression of the Tolerant Phenotype in T Cells

In VIVO
- Upregulated Day 4 Anergy vs. Day 4 Activation (n=20,000)
- Upregulated Day 4 Anergy vs. Day 7 Activation (n=18,000)

In VITRO
- Upregulated in Signal 1 Alone vs. Unstimulated (n=17,000)
- Upregulated in Signal 1 Alone vs. CSA Blocked (n=18,000)

N=13,000

N=12,000

N=4,500

HAM Analysis
N = 151

<table>
<thead>
<tr>
<th>Symbol</th>
<th>IN VIVO Ratio Anergy / Memory</th>
<th>IN VITRO Ratio Anergy / Resting</th>
<th>NAME - FROM GO Ontogeny Search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lag3</td>
<td>3.6</td>
<td>8.7</td>
<td>Lymphocyte-activation gene 3</td>
</tr>
<tr>
<td>Bcl3</td>
<td>3.5</td>
<td>14.6</td>
<td>B-cell leukemia/lymphoma 3</td>
</tr>
<tr>
<td>Tnfrsf4</td>
<td>2.9</td>
<td>5.7</td>
<td>tumor necrosis factor receptor superfamily member 4</td>
</tr>
<tr>
<td>Nr4a1</td>
<td>2.7</td>
<td>14.3</td>
<td>NF-ATc isoform a (NF-ATca)</td>
</tr>
<tr>
<td>Rgs16</td>
<td>2.7</td>
<td>10.7</td>
<td>Interleukin 5</td>
</tr>
<tr>
<td>Bcat1</td>
<td>2.6</td>
<td>34.0</td>
<td>branched chain amino acid transferase 1, cytosolic</td>
</tr>
<tr>
<td>Ptprs</td>
<td>2.5</td>
<td>4.5</td>
<td>Protein tyrosine phosphatase, receptor type, S</td>
</tr>
<tr>
<td>Mapkapk2</td>
<td>2.4</td>
<td>10.5</td>
<td>MAP kinase-activated protein kinase 2</td>
</tr>
<tr>
<td>Tubb5</td>
<td>1.8</td>
<td>4.5</td>
<td>beta-tubulin (isotype Mbeta 5)</td>
</tr>
<tr>
<td>Bcap37</td>
<td>1.8</td>
<td>4.1</td>
<td>B-cell receptor-associated protein 37</td>
</tr>
<tr>
<td>Fhl2</td>
<td>1.7</td>
<td>8.3</td>
<td>Four and a half LIM domains</td>
</tr>
<tr>
<td>Il1r2</td>
<td>1.5</td>
<td>3.9</td>
<td>Interleukin 1 receptor, type II</td>
</tr>
<tr>
<td>Cish</td>
<td>1.4</td>
<td>5.9</td>
<td>Cytokine inducible SH2-containing protein</td>
</tr>
<tr>
<td>Ndr1</td>
<td>1.4</td>
<td>8.0</td>
<td>N-myc downstream regulated gene 1</td>
</tr>
<tr>
<td>Etf1</td>
<td>1.4</td>
<td>4.6</td>
<td>Eucaryotic translation termination factor 1</td>
</tr>
<tr>
<td>Prkch</td>
<td>1.4</td>
<td>6.0</td>
<td>Protein kinase C, eta</td>
</tr>
<tr>
<td>Cnil</td>
<td>1.3</td>
<td>24.7</td>
<td>cornichon-like protein</td>
</tr>
<tr>
<td>Tnfsf11</td>
<td>1.2</td>
<td>26.0</td>
<td>Tumor necrosis factor (ligand) superfamily, member 11</td>
</tr>
<tr>
<td>Il13</td>
<td>1.2</td>
<td>95.7</td>
<td>Interleukin 13</td>
</tr>
<tr>
<td>Kcnn4</td>
<td>1.2</td>
<td>5.2</td>
<td>calcium -activated potassium channel, small conductance</td>
</tr>
<tr>
<td>Ccl1</td>
<td>1.1</td>
<td>159.9</td>
<td>chemokine (C-C) motif ligand 1</td>
</tr>
<tr>
<td>Egr2</td>
<td>1.1</td>
<td>75.9</td>
<td>Early growth response 2</td>
</tr>
<tr>
<td>Ier3</td>
<td>1.1</td>
<td>8.7</td>
<td>immediate early response 3</td>
</tr>
<tr>
<td>Gch</td>
<td>1.1</td>
<td>30.5</td>
<td>GTP cyclohydrolase 1</td>
</tr>
<tr>
<td>Rgs16</td>
<td>1.1</td>
<td>13.4</td>
<td>regulator of G protein signalling 16</td>
</tr>
<tr>
<td>Cs1f1</td>
<td>1.1</td>
<td>3.7</td>
<td>colony-stimulating factor 1 (macrophage)</td>
</tr>
<tr>
<td>Fkbp8</td>
<td>1.0</td>
<td>8.2</td>
<td>FK506 binding protein 8</td>
</tr>
<tr>
<td>Nr4a1</td>
<td>1.0</td>
<td>46.9</td>
<td>nuclear receptor subfamily 4, group A member 1</td>
</tr>
<tr>
<td>Lcp2</td>
<td>1.0</td>
<td>4.4</td>
<td>lymphocyte cytosolic protein 2</td>
</tr>
<tr>
<td>Dnajc5</td>
<td>1.0</td>
<td>16.1</td>
<td>DnaJ (Hsp40) homolog</td>
</tr>
</tbody>
</table>
LAG-3 Real Time PCR

Days in vivo

Relative Expression

- Anergy/Treg
- Effector/Memory

Days in vivo
LAG-3 is highly expressed on the surface of induced Treg
LAG-3

- Cloned in early 1990s
- CD4 homologue
- Does not substitute for CD4 in T cell development or helper T cell function
- Binds MHC II with higher affinity than CD4 but at a distinct site from CD4
- Function unclear - reported to play a role in modulating NK function, T cell function, APC function but no clear conclusions
- Cytoplasmic tail completely different from CD4. Signaling pathways unclear
Transduction of CD4+CD25- T cells with wild type LAG-3 confers regulatory capacity.
Can LAG-3 blockade alter endogenous T cell function?

Day 0: α-LAG-3 (0.2mg)
Day 1: VAC-HA
Day 3: α-LAG-3 (0.2mg)
Day 6: Adoptive transfer targets

Mix 1:1; inject i.v.

Unstimulated
CFSE^{lo}
B10.D2 splenocytes

HA peptide-pulsed
CFSE^{hi}

Day 7: Harvest spleens; Flow

ProTramp

Unstimulated

ProTRAMP+vaccine

ProTRAMP+vaccine+anti-LAG3
Tumor-tolerized endogenous CTL regain effector function in vivo after LAG-3 blockade

ProTramp (14-16 wk old)
α-LAG-3 leads to endogenous CD8 migration and TNF-α production within prostates of ProTRAMP mice.

ProTramp

ProTramp + α-LAG-3
Prostate tissue from Pro-Tramp mice 7 days post-AT

Clone 4 Adoptive Transfer

Clone 4 Adoptive Transfer + anti-LAG-3
Histology of prostate cancers treated with vaccine + anti-LAG-3 antibodies
LAG-3 and FoxP3 expression are concordant on antigen-specific CD4 T cells only when antigen is present as self or tumor.
CD4+25+ Treg from tumor bearing mice are highly suppressive in *in vitro* assays
Membrane protein encoding genes upregulated among CD4+ cells infiltrating human prostate cancer

<table>
<thead>
<tr>
<th>Probe ID</th>
<th>Fold Increase</th>
<th>Gene Definition</th>
<th>Gene Symbol</th>
<th>Cellular Component</th>
</tr>
</thead>
<tbody>
<tr>
<td>TNFSF9</td>
<td>122</td>
<td>Tumor necrosis receptor superfamily, member 9 (41BB)</td>
<td>TNFRSF9</td>
<td>Membrane</td>
</tr>
<tr>
<td>234895_at</td>
<td>95</td>
<td>cytotoxic T-lymphocyte-associated protein 4</td>
<td>CTLA4</td>
<td>Membrane</td>
</tr>
<tr>
<td>206486_at</td>
<td>86</td>
<td>lymphocyte-activation gene 3</td>
<td>LAG3</td>
<td>Membrane</td>
</tr>
<tr>
<td>211269_s_at</td>
<td>58</td>
<td>interleukin 2 receptor, alpha (CD25)</td>
<td>IL2RA</td>
<td>Membrane</td>
</tr>
<tr>
<td>223851_s_at</td>
<td>31</td>
<td>tumor necrosis factor receptor superfamily, member 18 (GITR)</td>
<td>TNFRSF18</td>
<td>Membrane</td>
</tr>
<tr>
<td>224211_at</td>
<td>17</td>
<td>forkhead box P3</td>
<td>FOXP3</td>
<td>Nucleus</td>
</tr>
</tbody>
</table>
LAG3 expression on tumor specific CD8 T cells restrains their accumulation and function of in prostate cancers.
CD4-independent role of LAG-3 for tumor-specific CD8 T cells
LAG-3 downregulates TCR dependent signaling

A

LAG-3+
LAG-3-/-

Min. post P/I
P-PLCγ1
total PLCγ1

B

Ca++

LAG-3 KO
LAG-3 WT

Time (ms)

Cross-Link
ProTRAMP model
Charles Drake
Adam Adler

LAG-3
Charles Drake
Ching-Tai Huang
Joe Grosso
Tulia Bruno
Ed Hipkiss
Christin Kelleher
Dario Vignale
Craig Workman