Cytokines in the (Immuno)Therapy of Malignancy

Kim Margolin, M.D.
City of Hope Comprehensive Cancer Center
Cytokines—according to Google
Biology of the cytokines

- Details to be discussed for IL-2>>other cytokines
 - Cytokine structure
 - Stimuli leading to induction of cytokine synthesis
 - Cell(s) responsible for cytokine production
 - Cytokine-responsive cell(s)/receptor structure
 - Signaling induced by cytokine binding
 - Overall result of cytokine function

- NOT for detailed discussion
 - Transgenic cytokine expression
 - Cytokines in adoptive cell therapies
 - Cytokines in tumor vaccine investigation
Clinical development

- **Early trials**
 - Dose-seeking, proof of principle
 - Toxicity, schedule considerations

- **Disease-directed studies**
 - Pilots
 - Phase II
 - Phase III

- **Modulation of activity, toxicity**

- **Current status and future possibilities**
 - Combination cytokines
 - With other modalities and classes of Rx, esp. “targeted”
 - Fusion molecules for focussed therapies
The players

For discussion
- GM-CSF
- Interleukin-2
- Interleukin-4/13
- Interleukin-6
- Interleukin-7/15
- Interleukin-12
- Interleukin-18
- Interleukin-21

Not for detailed discussion
- Interferons
- Hematopoietic: 3, 11, flt-3L
- Complex innate: TNF, IL-1
- “Suppressive”: IL-10, TGFβ
- Miscellaneous: TRAIL etc.
T cells are mobilized
when they encounter a cell such as a macrophage or a B cell that has digested an antigen
and is displaying antigen fragments bound to its marker molecules

Lymphokines help the T cell to mature.

The T cell, alerted and activated, secretes lymphokines

Some lymphokines spur the growth of more T cells.

Some lymphokines attract immune cells — fresh macrophages, granulocytes, and other lymphocytes — to the site of infection. Yet other lymphokines direct the recruits once they arrive on the scene.

Some T cells become killer cells and track down body cells infected by viruses.
Cytokine and Cell Interactions

GM-CSF → thymocytes

IL-2

IL-4 → Immature APC

GM-CSF

IL-10

IL-7 → thymocytes

IL-12(+) → NK

IL-15 → NK

IL-18

IL-21

IL-6

APCs (including macrophages and dendritic cells) are recruited into the tumour site by MIP-1α.
Cells of origin for some therapeutic cytokines: Type I and Type II

Antigen

Ag-MHCII

TCR

IL-1

IL-12

THO

TH1

TH2

IL-10

IFN-γ

IL-2

IFN-γ

IL-12

IL-4

IL-5

IL-10

IL-13

GM-CSF
GM-CSF as immunotherapy

- **Cells of origin**
 - Th1, Th2
 - Others include epithelial, fibroblast, *tumor*

- **Target cell:** immature DC (& myeloid progenitor)

- **Biological functions**
 - Stimulation of T cell immunity via effect on APC
 - Myeloid cell proliferation, differentiation

- **Clinical development**
 - Hematopoietic support
 - Not a potent stand-alone cytokine in cancer
 - **Transgenic expression (GVAX)**
 - **Adjunct to immunotherapy**
GM-CSF function in immunity

Th1

GM-CSF
IL-4

Phagocytosis

CD154 (CD40L)
or LPS

MonopDC1

iDC1

Adaptive immunity

DC1

Th1

Cell-mediated immunity

Bendzen 1999
Interleukin-2

- The mother of all therapeutic cytokines
- Produced by Th1 cells for T cells but...
- Many other cells express IL-2R
 - B, NK/NKT, monocytes
 - Variable affinity depending on subunit expression
 - Response to IL-2 depends on cell type, receptor, milieu

- Signaling
 - JAK-STAT
 - MAPK
 - PI3K

- Proliferation, cytotoxicity
IL-2 Signalling
Induction of an immune response

Recognition Processing Presentation Activation

Erkennung Prozessierung Präsentation Aktivierung

Antigen APZ B7-1 (CD80) CD28 CD4 TCR MHC II Peptid T_H

IL-2R IL-2

Recognition Processing Presentation Activation
Where do cytokines come from?
Will cancer come to an end?
Which came first, the T cell or NK cell?

A BRIEF HISTORY OF IL-2

High Dose Interleukin-2
Kidney Cancer

Partial Response (n=26)
Complete Response (n=17)
Overall Response (n=43)

Probability of Continuing Response

Duration (months)

RCC

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
0 12 24 36 48 60 72 84 96 108 120 132

(10 Years)
Pioneering NCI studies

- **Biology/source**
 - T cell growth factor
 - Jurkat source
 - Recombinant E. coli

- **Preclinical models**
 - DLTs due to CLS
 - Toxicities vary by species
 - Dose-dependent activity

- **Early clinical studies + LAK**

- **Role of IL-2 in adoptive cell-Rx strategies**

Extramural IL-2 studies

- **In solid tumors**
 - With LAK cells
 - Single agent
 - With α-IFN
 - With other cytokines
 - With chemotherapy
 - Toxicity modulation

- **In heme malignancies**
 - Trial methodology challenging
 - Phase II data promising
 - Phase III data disappointing
IL-2 in hematologic malignancy

- **Preclinical:** IL-2 exposure of BM/PB induced cytotoxic lymphocytes vs. chemo-S/R leukemia, NHL, cancer

- **Early clinical**
 - Ex vivo Rx of HCT product w/IL-2 feasible, may promote h’poiesis
 - IL-2/LAK cell Rx had slight activity in HD, NHL
 - Autologous GvHD endpoint promising

- **Post-transplant IL-2 had dose-dependent toxicities**
 - Less technically demanding than treating cells w/IL-2
 - Encouraging pilot data from Seattle, other centers
 - Auto-HCT feasible, allo-HCT too complex

- **Phase III designs included HCT and non-HCT regimens**
 - Acute leukemia: feasibility problems, better alternatives
 - NHL: Negative result of post-aHCT IL-2 (J Thompson/SWOGI)
Overall conclusions: Clinical IL-2 studies ~1985-2000

- 15-20% pts w/RCC, Mel benefit
- Rx ratio not improved by
 - IL-1 receptor agonist (decoy)
 - TNF blockade (Ab or decoy)
 - Lysophylline (lipid mediators)
 - Histamine (inhibit mϕ ROS)
 - iNOS blockade (inhibit CLS)
- Dose-response inconclusive
- Not effective in biochemo
 - RCC w/pyrimidines, vincas
 - Melanoma w/DTIC, CDDP

- Novel strategies did not improve therapeutic index
 - With IFN α or γ
 - With tumor-directed Ab
 - With agonistic OKT3 Ab
 - Structure-function alterations
 - PEG-IL-2
 - Liposomal IL-2
 - IL-2 “specific agonist”
 - Albuleukin

Worth pursuing in RCC, melanoma, ?heme
IL-2 2001-2006: General considerations

Investigations continuing on structural alterations to reduce capillary leak

Toxicity modulation approaches have been overtaken by investigation of mechanisms and patient selection factors: different paths for different diseases

Rational combinations hold promise for improving therapeutic ratio
RCC: Ag-specific strategies elusive

Defining correlates of benefit

- Target organs
 - Lymphocytes, ?other cells
 - Blood count changes
 - Cytokines
 - Autoimmune events
- Prognostic
 - Sites of mets
 - Pace of mets
 - Nephrectomy state
- Predictive
 - Histology
 - Hypoxia-related, other cell pathways
New directions for IL-2-based Rx in RCC

- “Select” trial to validate predictors, correlates
 - CA-IX
 - Histology
 - Favorable: 😊 clear, alveolar, <50% granular,
 - Unfavorable: 😞 papillary, >50% granular
 - New exploratory endpoints
 - VHL gene mutations
 - Other pathways: glut-1, PTEN/AKT, CXCR4
 - Immuno”suppressive” factors-preRx analyses
 - CD11b immature myeloid cells
 - arginase, ξ-chain function

- Rational new combos
 - With targeted agents
 - With angiogenesis inhibitors

} ongoing
Melanoma: Ag-specific strategies remain at forefront

- **Multicomponent Rx**
 - Lymphodepletion/reconstitution
 - Vaccine (many options)
 - Regulatory blockade (IL-2 effects on Treg need further elucidation)
 - CTLA-4Ab
 - Ontak
 - Other resistance modulators
 - Passive/active
 - Cloned/expanded Ag-specific effector lymphocytes
 - Chimeric receptor-expressing T cells
 - Immunocytokine to redirect effector cells
 - Methylation inhibitors to ↑ expression of immune response genes

- **Immunological insights plentiful, but useful predictors remain under investigation**
Interleukin-4

- Pleomorphic cytokine signals through STAT 6
- Th$_2$ cytokine mediates T-B, other interactions
- Net effects depend on cytokine and cell milieu
 - Mainly a B cell-stimulatory cytokine
 - Inhibits non-specific NK activity but
 - Enhances other adaptive immune functions
 - Growth factor for Th2
 - Promotes proliferation and cytotoxicity of CTL
 - Stimulates MHC class II expression
 - Contributes to DC maturation
 - Enhances mΦ tumorcidal activity
IL-4 Signalling
Interleukin-4

- Promising original data
 - One of the first transgenically expressed cytokines
 - Tumor-associated immune infiltrate was prototype
- Clinical experience limited
 - Studied like IL-2
 - Minimal activity, much toxicity (mucocutaneous, cardiac)
- Most promise as Rx to “elicit” moDC from PBMC
 - Phase I was directed at in vivo DC expansion (Gitlitz JIT ’03)
 - How does this compare w/flt-3L?
 - IL-13 may be superior in vitro to IL-4
 - What is the current status of in vivo DC work?
IL-4 and GM-CSF in DC

Th1 → GM-CSF

IL-4

Phagocytosis

GM-CSF

Mon pDC1

iDC1

CD154 (CD40L) or LPS

Adaptive immunity

DC1 → Th1

Cell-mediated immunity

Bendtzen 1999
IL-4 and IL-13

Similarities
- Predominantly anti-inflammatory effects
- Favor Th$_2$ responses
- Partially common receptor
- Promotes Ig class switch
- Used w/ GM-CSF to elicit moDCs

Differences
- IL-13 activity predominantly on monocyte/mΦ cells
- IL-13 lacks B, T cell effects

Most important: IL-13 receptors on tumor cells, especially glioma
- Immunotoxins under evaluation
- Chimeric T cell Ag receptor in clinical trials

Shared receptor subunits depend on cell type
IL4R and IL13R subunit interactions
Sinks, suppressors and antigen presenters: how lympho-depletion enhances T cell-mediated tumor immunoRx

IL-6: A very pleiotropic cytokine

- Induction of T-Cell Differentiation
 - T Cell
 - Cytotoxic T Lymphocyte

- Induction of Acute-Phase Reactants
 - Hepatocytes
 - C-Reactive Protein

- Induction of Nerve Cell Differentiation
 - Astrocytes
 - NGF-Like Activity

- Induction of B-Cell Differentiation
 - B Cell
 - Plasma Cell
 - Myeloma Cell
 - Malignant Transformation

- Induction of Myeloma-Plasmacytoma Growth
 - Megakaryocyte

- Induction of Leukemic Cell Differentiation
 - M1
 - Macrophages

IL-6

- Tumor source
 - Associated with unfavorable outcome renal CA, melanoma
 - An important growth factor for myeloma
 - Major effector of paraneoplastic thrombocytosis

- Adaptive system
 - B cell growth/differentiation
 - CTL differentiation
 - Type 2 responses

- Preclinical data showed activity in selected tumor models

- Phase I and II clinical data
 - Hematologic (thrombocytosis, anemia), arrhythmias, neurotox
 - Insufficient clinical activity
 - Concern about potential tumor-promoting effects

- Paradox: IL-6 Ab now in trials alone or w/IL-2 based on preclinical, clinical leads
IL-12

- Prototypical type I cytokine, induces IFN-γ
- Link between innate, adaptive immune response
- DC production triggered by variety of stimuli
- Receptors mainly on activated T and NK cells
- Anti-angiogenic activity via IFN induction
- In animals, ↑ antitumor effects in combo w/other type I cytokine (IL-2)
- Probable role in vaccine development, ? tumor vaccine
IL-12 and its receptor

- IL-12 and IL-10 work to inhibit each other.
- IL-12 stimulates Th1 Development.
- INF-γ release stimulates Monocytes leading to further IL-12 release.
- INF-γ stimulates Th1 Cell.

IL-12 and IL-10 act on the immune system, with IL-12 promoting Th1 cell development and INF-γ release, while IL-10 inhibits this process.

Diagram illustrates the complex interactions involving IL-12, IL-10, Th1 cells, and INF-γ, showing how these cytokines and cells interact within the immune system.
IL-12 Clinical trial experience

- Subcutaneous dosing in initial trials
 - Lymphopenia, hepatoxicity dose-limiting
 - Fever, headache, fatigue, nausea common
 - Attenuation of toxicities with re-exposure

- i.v. dosing featured test dose
 - Markedly reduced toxicity at similar doses
 - Type II cytokines increased, especially IL-10
 - Type I cytokines decreased, especially IFN-γ

- Phase II i.v. IL-12 without test dose had excess toxicity

- b.i.w. schedule for i.v. IL-12
 - Less attenuation of IFN-γ
 - Clinical activity associated with maintenance of IFN-γ induction

- Combinations w/IFN-α
 - Feasible
 - Therapeutic ratio not favorable
IL-18

- Member of IL-1 family of cytokines
- Activates NK cells and induces type I cytokines
- Promotes Th1 and memory CD8 T cells
- Upregulates FasL on effector lymphocytes
- Cytotoxicity MOA “complementary” to that of IL-12
 - Not IFN-γ-dependent
 - 18 uses Fas/FasL while 12 uses perforin/granzyme

- Antitumor activity in animals
 - Alone
 - W/IL-2, IL-12

- Phase I DLTs
 - Leukopenia
 - Fever/chills
 - Hepatotoxicity

Phase II in melanoma ongoing [caveat: like IL-6, may be GF for selected CAs]
IL-21: another pleiotropic cytokine

Durable anti-tumour activity
- Clonal expansion/proliferation
- Increased effector function
 - cytotoxicity
- cytokine production (IFN-γ, TNF-α, IL-10)
 - increased granzyme A/B, perforin
 - Inhibition of IL-15 induced proliferation

Humoral immunity
- B cell proliferation (CD40)
 - Increased IgG production
 - Decreased IgE production (IL-4)
 - B cell growth inhibition (IgM)

Anti-tumour activity
- Increased IFN-γ, IL-10, TNF-α production
- Increased granzyme A/B, perforin
- Increased cytotoxicity
 - Decreased growth
Phase I i.v. outpatient IL-21

J. Thompson et al, ASCO 2006

IL-21 Treatment Schedule
(outpatient administration of two 5-day cycles)

- Tolerable outpatient regimen identified
- Multiple dosing cycles feasible
- IL-21 pharmacodynamic activity
 - Direct effect on lymphocyte count
 - Increase in sCD25
- Four responses observed at different dose levels
 - One patient with Complete Response
 - Three patients with Partial Response

Phase II studies planned
RCC w/TKI (Phase I/II); Melanoma as SA
The Corrections: Some of the Lessons Learned

Biological insights → potential new targets

- Activation-induced death of effector T, NK cells
- Intrinsic, acquired tumor resistance mechanisms
- Counterregulatory cytokines, other substances in tumor-effector cell milieu
- CD4+CD25+FoxP3+ regulatory T cells
- Enhanced understanding of effector cell gene expression, polymorphisms
Other strategies based on cytokine structure and biology

- **Immunocytokines**: Ab chain fused to cytokine
- **Immunotoxins**
 - Localized toxin delivery similar to Ab-based RxS
 - Cytokine-receptor targeting e.g. Ontak (IL-2-diptheria)
- **Novel T cell-receptor engineering**
 - Xgenic TCR→IL-13 recognizing IL13R on glioma
 - Immunofusions: Ag-specific TCR fused to cytokine
Immunocytokine structure

well, sort of…

![Diagram of immunocytokine structure]

Immunofusion TCR-IL-2

Single chain TCR (264scTCR)

![Diagram of single chain TCR (264scTCR)]
If only it were so easy...
Cytokine Therapy report card

- Points taken off for
 - Empiric approach
 - “Me-too” research and development designs

- Extra credit given for
 - Incorporation of cytokine biology into novel structure, strategies
 - Recent exploration of mechanisms of resistance, predictive factors and selection strategies

Overall grade B+
Thank you

Any questions?