Cancer Immunotherapy with T Cells: Vaccines and Adoptive T Cell Therapy

I. T cells and tumor immunity

II. Vaccines: generate T cell response

III. T cell therapy: augment T cell response
T Cell Infiltration Predicts Survival in Ovarian Cancer

Intratumoral

Stromal

74 advanced stage ovarian

Zhang et al, NEJM, 2003
Infiltrating Memory T Cells Predict Outcome in Colorectal Cancer

Factors Predicting Outcome:
- Th1
- T_{EM}
- Central
- Dense

>400 samples

Pages F et al, NEJM, 2005

Cancer Antigens Recognized by the Immune System

<table>
<thead>
<tr>
<th>Tumour-associated antigen</th>
<th>Tumour</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS3</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>KRAS2</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>APC</td>
<td>Colorectal carcinoma</td>
</tr>
<tr>
<td>TGFβ receptor II</td>
<td>Colorectal carcinoma</td>
</tr>
<tr>
<td>Caspase 8</td>
<td>Head and neck tumours</td>
</tr>
<tr>
<td>β-catenin</td>
<td>Melanoma</td>
</tr>
<tr>
<td>CDK4</td>
<td>Melanoma</td>
</tr>
<tr>
<td>GrTV</td>
<td>Melanoma</td>
</tr>
<tr>
<td>SYT-SSX fusion protein</td>
<td>Soft-tissue sarcoma</td>
</tr>
<tr>
<td>SP100</td>
<td>Melanoma</td>
</tr>
<tr>
<td>MART1</td>
<td>Melanoma</td>
</tr>
<tr>
<td>Tyrosinase</td>
<td>Melanoma</td>
</tr>
<tr>
<td>TRP1</td>
<td>Melanoma</td>
</tr>
<tr>
<td>TRP2</td>
<td>Melanoma</td>
</tr>
<tr>
<td>PSA, PAP, PSA A</td>
<td>Prostate carcinoma</td>
</tr>
<tr>
<td>Melanoma antigen family (MAGE)</td>
<td>Several types</td>
</tr>
<tr>
<td>G antigen family (GAGE)</td>
<td>Several types</td>
</tr>
<tr>
<td>B melanoma antigen (BAGE)</td>
<td>Several types</td>
</tr>
<tr>
<td>SSX2</td>
<td>Several types</td>
</tr>
<tr>
<td>SAGE1</td>
<td>Several types</td>
</tr>
<tr>
<td>LAGE1</td>
<td>Several types</td>
</tr>
<tr>
<td>Cancer/testis antigen NY-ESO1</td>
<td>Several types</td>
</tr>
<tr>
<td>CEA</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>ERBB2</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>GA73-1</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>Mucin 1</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>Survivin</td>
<td>Several types</td>
</tr>
<tr>
<td>Telomerase</td>
<td>Several types</td>
</tr>
<tr>
<td>CD55</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>PFRAME</td>
<td>Several types</td>
</tr>
<tr>
<td>Chronic gonadotrophin β</td>
<td>Several types</td>
</tr>
<tr>
<td>α-fetoprotein</td>
<td>Hepatocellular carcinoma</td>
</tr>
<tr>
<td>Global H, transcription factor α, and αδTf-Tn</td>
<td>Several carcinomas</td>
</tr>
<tr>
<td>Gangliosides</td>
<td>Melanoma</td>
</tr>
<tr>
<td>SAF71, SAF72</td>
<td>Some carcinomas</td>
</tr>
<tr>
<td>E6, E7 (human papillomavirus)</td>
<td>Cervical carcinoma</td>
</tr>
<tr>
<td>LMP2, EBNA1 (Epstein-Barr virus)</td>
<td>Nasopharyngeal carcinoma</td>
</tr>
</tbody>
</table>

adapted from Mocellin S et al, Lancet Oncol, 2004
Pre-Existent Tumor T Cell Immunity is Low Level

Minority of the inflammatory infiltrate in tumors

Effector cells at the site of the tumor

<table>
<thead>
<tr>
<th>Frequency CD8+</th>
<th>Functional State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volunteer donors (blood)</td>
<td>0.07%</td>
</tr>
<tr>
<td>(65% ± 4%)</td>
<td></td>
</tr>
<tr>
<td>(65% ± 29%)</td>
<td></td>
</tr>
<tr>
<td>(35% ± 29%)</td>
<td></td>
</tr>
<tr>
<td>Melanoma patients (blood)</td>
<td>0.1%</td>
</tr>
<tr>
<td>Melanoma patients (tumor)</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Adapted from Romero et al, Immunol Rev, 2002
Cancer Immunotherapy with T Cells: Vaccines and Adoptive T Cell Therapy

I. T cells and tumor immunity

II. Vaccines: generate T cell response

III. T cell therapy: augment T cell response
Mechanisms of Ineffective Tumor Immunity

- T regulatory cells
- Tolerance to self antigens
- Non functional APC
- Macrophage APC w/o co-stim
 - Suppressive DC
 - Lack of DC
- Chronic inflammation
- Inhibitory cytokines
- Tumor microenvironment
- Limited response

adapted from Smyth et al, Nat Immunol, 2001
Circumventing Tolerance via Treg Depletion

Knutson et al, JI, 2006

Increased tumor antigen specific immunity
T cell and antibodies
Depletion of Tregs Prior to Vaccination Enhances Immunity

XCD25-Immunotoxin enhances MR

3 id injections of tumor RNA transfected DC +/- XCD25 Immunotoxin

RENAL CELL CA

Dannull, J et al, JCI, 2005
Activating APC for Vaccination

Intradermal injection of cytokines: trafficking to dermis/activation

Resting

Activated

Green: CD11c
Red: CD86
Toll-Like Receptor Ligands

Medzhitov, R. Nat Rev Immunol, 2001
Activation of Skin APC

Baseline
H&E
PBS
GM-CSF
Dermis
TLR-7 Agonist
Imiquimod
10-fold
TNTC
Wagner et al, 2006
Stimulating Dendritic Cells *in situ* with CpG via TLR-9

8 melanoma patients

Patient 1

Patient 2

- Standard adjuvant IFA
- Standard adjuvant IFA

\[\text{T}_{EM} \text{ with lytic activity} \]

Speiser et al, JCI, 2005
Manipulating the Antigen for Vaccination

Limited response

Effector
CTL

TCR

MHC class I/B2-m

Tumor Peptide

Tumor cell

CD8

CD4

CD28

CD40

CD40L

TCR

MHC I

MHC II

DC
Peptide Modified to Increase Class I Binding

Modified gp100 Peptide
- Stage I-III melanoma: adjuvant setting
- Modified gp100 peptide
 - HLA-A2
 - p209-2M
- Given sq in IFA q 2 or 3 weeks
- HLA-tetramer to assess immunity
- Increased peptide specific CD8+ in 28/29
- 28% of patients >1%

Smith et al, JCO, 2003
Intermediate Binding Altered Peptides are Optimal Vaccine Candidates

AH1 epitope/CT26 tumor/BLAB/c: libraries screened by T cell clone

McMahan, R et al JCI, 2006
Xenoantigen Immunization

Mouse PAP in Man
- DC pulsed with mouse PAP protein
- Highly homologous foreign protein
- 21 patients with metastatic prostate cancer
- 2 monthly vaccinations
- All patients = immunity to mouse PAP
- 50% immunity to human PAP
- 6/21 with clinical stabilization
- Stabilization associated with human PAP immunity

Fong et al, JI, 2001
Vaccinating to Induce CD4\(^+\) T Cell Immunity

HER2 Peptide Immunity
- HER2 Th peptides in GM-CSF given i.d.
- 3 peptides/vaccine
- Stage III/IV breast, ovarian, or NSCLC
- 38 patients completed all 6 immunizations
- >90% developed immunity to HER2 peptides
- >60% developed immunity to HER2 protein
- Immunity could persist >1 year
- Epitope spreading in majority = protein response

HER2 Protein Immunity

Definition of Class II Epitopes
- HER2 Th peptides in GM-CSF given i.d.
- 3 peptides/vaccine
- Stage III/IV breast, ovarian, or NSCLC
- 38 patients completed all 6 immunizations
- >90% developed immunity to HER2 peptides
- >60% developed immunity to HER2 protein
- Immunity could persist >1 year
- Epitope spreading in majority = protein response

Disis et al, JCO, 2002
Evolving Immunity with Immunization

Intramolecular epitope spreading

Intermolecular epitope spreading

HER2-neu Peptides

% with T cell Immunity

Disis et al, JCO, 2002

Disis et al, J Clin Immunol, 2004
Productive Immunity Modulating the Microenvironment

Vanderlugt et al, Nat Rev Immunol, 2002
DC-MUC-1 Vaccine + LD IL-2 in RCC Elicits Epitope Spreading

15% RR (PR+CR), 1 CR
Induced immunity associated with response \((r=0.79)\)
\((n=20)\)

Wierecky J et al, Ca Res, 2006
Vaccinating Established Disease

Clinical Outcomes: Cancer Vaccines in Melanoma Patients

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Total Patients</th>
<th>Responding Patients</th>
<th>RR%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peptide</td>
<td>410</td>
<td>11</td>
<td>2.7</td>
</tr>
<tr>
<td>Viral Vector</td>
<td>160</td>
<td>3</td>
<td>1.9</td>
</tr>
<tr>
<td>Tumor Cells</td>
<td>43</td>
<td>2</td>
<td>4.6</td>
</tr>
<tr>
<td>Dendritic Cells</td>
<td>116</td>
<td>11</td>
<td>9.5</td>
</tr>
</tbody>
</table>

adapted from Banchereau et al, Nat Rev Immunol, 2005
Therapeutic Immunization

Antigen Specific T cell Activation

Minimal Tumor Cell Death

Suppressive tumor microenvironment

Continued Tumor Growth

Tumor Overwhelms Immune System

Adapted from Finn, Nat Rev Immunol, 2003
Cancer Vaccines in the Adjuvant Setting

Table 4. Survival and Recurrence Rates for the Vaccinated and Prospectively Observed Control Groups of Patients With Node-Positive Breast Cancer

<table>
<thead>
<tr>
<th></th>
<th>Vaccinated, HLA-A2+ (n = 24) (%)</th>
<th>Observed, HLA-A2- (n = 29) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall survival</td>
<td>100</td>
<td>93</td>
</tr>
<tr>
<td>Disease-free survival</td>
<td>85.7</td>
<td>59.5</td>
</tr>
<tr>
<td>Recurrence rate</td>
<td>8.3</td>
<td>20.7</td>
</tr>
</tbody>
</table>

* Median follow-up was 22 months (range, 6 to 48 months).
Cancer Immunotherapy with T Cells: Vaccines and Adoptive T Cell Therapy

I. T cells and tumor immunity

II. Vaccines: generate T cell response

III. T cell therapy: augment T cell response
Intervention Based on Tumor Burden

<table>
<thead>
<tr>
<th>Disease Burden</th>
<th>Vaccine Prevention</th>
<th>Therapeutic Vaccines</th>
<th>Alternative Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>No Disease</td>
<td>≥ 1:10,000 T cells</td>
<td>>1:10,000 T cells</td>
<td>>1:100 T cells?</td>
</tr>
<tr>
<td>Microscopic Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Established Disease</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Long Term Survival after Transplant Relapse with DLI

Collins et al, JCO, 1997
Transfer of Tumor Competent T Cells

Clones
Enriched PBMC
TIL
Gene Modified Cells

Gattinoni L et al Nat Rev Immunol, 2006
Adoptive T Cell Therapy with CD8+ T Cell Clones

Infusion of MART-1 CD8+ T Cell Clones

Yee, C et al, PNAS, 2002
Adoptive Transfer of Expanded TIL After Induction of Lymphopenia

- 35 patients with MM
- Cytoxan/Fludarabine
- TIL + HD IL-2
- 18/35 (51%) had objective clinical response
 - 3 CR
 - 15 PR
- 1 patient: EBV lymphoma

Dudley M et al, JCO, 2005
Lymphodepletion Will Enhance T Cell Expansion \textit{in vivo}

- Removal of cells (e.g. NK) that consume critical cytokines, IL-7, IL-15
- Preferential depletion of T regulatory cells
- Homeostatic proliferation

\textit{Klebanoff CA et al, Trend Immunol, 2006}
T Cells Genetically Engineered to Express Functional MART-1 TCR

MART-1 TCR from CR TIL

Transduced PBMC

12% Partial Response Rate

Cohorts based on cell doubling time
Infused when actively dividing

Tumor regression

Morgan RA et al, Science, 2006
Effect of Adoptively Transferred T Cells in vivo

Persistence

Immune Escape

Dudley M et al, JCO 2005
Successful Immunity Leads to Immunoediting

- Functional and Effective Immunity
- Persistent and Ongoing Immune Response: Selective Pressure
- Tumor that has been “Immunologically Sculpted”

Eradication of Tumor Cells → Outgrowth of Cells that Survive Immune Attack → Uncontrolled Tumor Growth

Dunn et al, Nature Immunol, 2002
Generating Anti-Tumor T Cell Immunity: Effectors and the Environment

Productive Inflammation
- GM-CSF, IL-12, IL-18, IFNγ, IL-4

Non-Productive Inflammation
- VEGF, IL-6, IL-10, TGFβ, M-CSF, NOS, arginase, IDO, PGE2, COX2, gangliosides

Tumour microenvironment

Supportive of T cell activation and expansion

adapted from Zou, Nat Rev Ca, 2005