Does Antibody Therapy Induce Immune Responses?

ISBTC Minisymposium 2006

Madhav V. Dhodapkar, MD
The Rockefeller University
New York, NY
Mechanisms of Anti-tumor Effects of MoAbs

MoAb

- Direct effect
- Innate effectors
 - ADCC
 - Complement
- ???

Adaptive immunity
 - T cell immunity
Why Harness MoAbs to Elicit Adaptive Immunity

- May provide a mechanism for durable responses.
- Immunologic memory: booster effect with repeat administration.
- Targeting antigen negative tumor cells (epitope spread)
Retreatment with Rituximab in Non-Hodgkin’s Lymphoma

Opsonizing tumor cells with moAbs enhances dendritic cell mediated cross-presentation of cellular antigens

FcγR dependent
Not simply increased uptake

Expansion of tumor reactive T cells in patients with progressive myeloma after stimulation with tumor cell loaded DCs

Dhodapkar et al. PNAS 99: 13009, 2002
Enhanced T cell Immunity after Immune Complex Mediated Antigen Presentation
Fc receptor system as a balance of activating and inhibitory receptors

Ravetch JR. Ann Rev Imm 2001
Human Fc Receptors

- FcγRI (CD64)
- FcγRIIA (CD32)
- FcγRIIB (CD32)
- FcγRIIIA (CD16)
- FcγRIIIB (CD16)
- FcεRI
- FcαRI (CD89)
Selective blockade of inhibitory Fcγ receptor leads to DC maturation in the presence of normal human plasma

Dhodapkar et al. PNAS 2005
Enhanced Generation of Anti-Tumor Immunity After Blockade of Inhibitory Fcγ receptors on human DCs

Dhodapkar et al, PNAS 2005
Effect of activating FcγR polymorphisms on survival of Rituxan treated patients

Preliminary Evidence for Induction of T cell immunity In Patients Treated With Anti-tumor mAbs

<table>
<thead>
<tr>
<th>mAb</th>
<th>Investigator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rituxan (Anti-CD20)</td>
<td>Wong & Levy</td>
</tr>
<tr>
<td>2B1 (HER2-neu-RIII bispecific)</td>
<td>Weiner et al.</td>
</tr>
<tr>
<td>Anti-MUC1</td>
<td>DeBono et al.</td>
</tr>
</tbody>
</table>
INDUCTION OF ADAPTIVE ANTI-HER2/neu IMMUNE RESPONSES BY ANTIBODY THERAPY

Phase IB/II Trial of 2B1 Antibody in HER2/neu (+) Breast Cancer

ECOG Trial E3194

Alpaugh, Borghaei, Clark, Weiner
2B1 Treatment-induced T-Cell Responses

Anti-HER2/neu x anti-FcγRIII bispecific antibody treatment is associated with the induction of host immune responses against HER2/neu in a manner that suggests antigen presentation.

Intracellular cytokine flow cytometry analysis of antibody therapy-induced anti-HER2/neu CD4 and CD8 T cell responses
Induction of T cell immunity after injection of anti-MUC1 mAb

<table>
<thead>
<tr>
<th>Dose level</th>
<th># Pts with MUC1 sp T cell responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mg</td>
<td>3/5 patients</td>
</tr>
<tr>
<td>4 mg</td>
<td>2/4 patients</td>
</tr>
</tbody>
</table>

deBono JS et al. Ann Oncol 2004
Induction of T cell immunity by mAbs: Some questions

- Nature of T cell response
 - How frequent, antigenic targets, effector function, tissues.

- Underlying biology
 - What is special about FcR mediated signals and cross-presentation

- Variables that impact induction
 - Host related (e.g. FcR polymorphism)
 - mAb related (e.g. Fc engineering, target antigen)

- Clinical Significance / opportunities
 - Impact on durability of responses, immune escape.
 - Combination with other vaccines.
Conclusion

- Anti-tumor mAbs can lead to the induction of adaptive immunity against cancer.

- Harnessing the ability of these mAbs to elicit adaptive immunity may enhance the anti-tumor effects of mAbs in the clinic.
Acknowledgment

All patients;
& referring physicians

Dhodapkar Lab
 D Chang
 A Kukreja
 R Spisek
 J Krasovsky
 A Hutchinson
 P Matthews

Kavita Dhodapkar
 D Banerjee
 J Kaufmann
 E Matayeva

Ralph Steinman

Jeffrey V Ravetch

Macrogenics:
 S Koenig, E Bonvini, M-C Veri

RU, MSKCC and SVCCC nursing and support staff

Funding Agencies: NIH, Damon Runyon, Dana Foundation, Irene Diamond Fdn, Irma T Hirsch Fdn