Immunosensitization of Melanoma Tumor to Adoptive Immunotherapy by a Histone Deacetylase Inhibitor

Dan Danh Vo
Oct. 2006
Metastatic Melanoma Treatment

• Multiple forms of immunotherapy have been proposed over the years
 – Dendritic cell vaccine
 – IL2
 – Adoptive cell transfer therapy
• Patient response rate remained low, about (5%-15%)
• Tumor resistance possibly due to mechanisms of immune escape

Cancer Res. 2006 Jun 1;66(11):5527-36
Cancer Escape from Immunotherapy

1. Suboptimal antigen presentation: Tolerant self-antigens

2. Limited CD8+ CTL activation and expansion: CTLA4, PD-1

3. Lack of antigen recognition: Low MHC, TAP deficient

4. Immune suppressive tumor milieu: Treg, VEGF, IL-10, PGF2, TGF-β

5. Insensitivity to pro-apoptotic signals

Immune sensitization with HDACi
HDAC Inhibitors as Potential Immunostimulators

• Effects on tumor cells:
 – Increase death receptor expression.
 – Increase tumor antigen expression.
 – Increase expression of ligands for NK activating receptors.

• Effects on immune system cells:
 – Little cytotoxic effects on immune system cells.

The HDACi NVP-LAQ824

- LAQ824: A synthetic cinnamic acid HDACi.
- HDACi class: Hydroxamic acid group, which includes SAHA (Vorinostat, Zolinza), trichostatin A and pyroxamide.
- Pan-HDAC class I (HDAC1, 2, 3 and 8) and II (HDAC4, 5, 6, 7, 9, 10) inhibitor.

Treatment of melanoma tumor with histone deacetylase inhibitor may cause tumor cells to be more sensitive to immunotherapy.
Pmel-1 Model of TCR Transgenic Cell Adoptive Transfer

Tumor Regression and Autoimmunity after Reversal of a Functionally Tolerant State of Self-reactive CD8⁺ T Cells

Willem W. Overwijk,1,2 Marc R. Theoret,3 Steven E. Finkelstein,1 Deborah R. Surman,1 Laurina A. de Jong,2 Florry A. Vyth-Dreese,2 Treet A. Deldemijn,2 Paul A. Antony,1 Paul J. Spiess,1 Douglas C. Palmer,1 David M. Heimann,1 Christopher A. Klebanoff,1 Zhiyu Lu,1 Leroy N. Hwang,1 Lionel Feigenbaum,4 Ada M. Kruisbeek,2 Steven A. Rosenberg,1 and Nicholas P. Restifo1

The Journal of Experimental Medicine • Volume 198, Number 4, August 18, 2003 169-180
http://www.jem.org/cgi/doi/10.1084/jem.20030050

Pmel-1 gp100 TCR Transgenic Mice

Pmel-1 TCR

Clone 9

T Cell

B16

hgp100 > mgp100

0 10 20 30 40 50 60 70 80 90 100

Days After Treatment

Tumor Size (mm²)

A

B

no treatment

pml-1 (fresh) + rFPVhgp100 + IL-2

pml-1 (cultured) + rFPVhgp100 + IL-2

0 6 12 18 24 30 36 42 48 54 60

381
s.c. B16 melanoma treatment by adoptive transfer of pmel-1 splenocyte + HDACi results in initial tumor regression and slower growth rate

* P-value < .00001

Tumor Growth Curves
s.c. B16 melanoma treatment by adoptive transfer of pmel-1 splenocyte + HDACi results in increase survival

Survival Curves

* P-value < .05

Pool from 3 independent experiments
HDACi causes increase in gp100+ CD8+ T cell proliferation and intratumoral infiltration in vivo

Pmel-1 Adoptive Transfer

Pmel-1 Adoptive Transfer + HDACi LAQ824

* P-value < .05
Immunohistochemical Staining
CD8+ T Cell Intratumoral infiltration

Pmel-1 Adoptive Transfer

Pmel-1 Adoptive Transfer + HDACi
T Cell Activation by IFNγ Staining

Pmel-1 Adoptive Transfer

Pmel-1 Adoptive Transfer + HDACi

Day 28 Post Adoptive Transfer

% IFNγ+ CD8+ T Cell

IFN-γ-FITC vs C8-PE

R3

59.95%

17.48%

Day 28

Spleen Day 7

Spleen Day 14

Spleen Day 28

% IFNγ+ CD8+ T Cell
HDACi enhances pmel-1 cytotoxic activity in vitro
Immune Sensitization with HDACi

1. Antigen presentation and CD8+ CTL activation

2. CD8+ CTL expansion and circulation

3. Antigen recognition on cancer cells

4. Pro-apoptotic signals to cancer cells
 - Perforin/GzB
 - Death Receptors

HDACi
ACKNOWLEDGEMENT

Antoni Ribas, M.D.

James Economou, M.D. PhD
Robert Prins, PhD.
Timothy Donahue, M.D.
Jonathan Begley
Hermes Garban, M.D. PhD
Pilar de la Rocha
Lilah Morris, M.D.
Begona Comin-Anduix, PhD.
Samuel Olson
Joy Wiesnewski
Meng-Yin Yang, M.D.
Pejman Kharazi M.D.