Cancer Vaccine Clinical Trials Working Group

Work Stream 4

Combinations of cancer vaccines with other agents

Scope

- Defining a cancer vaccine "combination"
- Proposals for toxicology testing of combinations
- Determining dose and schedule in early clinical testing
- Extent of component control needed in definitive trials
- "Ownership" issues

Rationale for cancer vaccine combinations

- Cancer vaccines to date: effect but little efficacy
- Clear evidence of "afferent" immunogenicity
- Checkpoints dampen T-cell expansion/activation
- Multiple tumor escape mechanisms frustrate "efferent" arm of immune response
- Combinations therefore make sense
 - Vaccine to generate immune effectors
 - Other agents to expand immune response and overcome tumor resistance mechanisms

Definitions

- Vaccine = antigen or antigen mimic + adjuvant + excipients
 - Multiple simultaneous vaccines are not combinations
- Other agent(s) not a vaccine (for simplicity we assume one other agent)
 - Cytokines
 - Immunomodulatory small molecules/Mabs eg, co-stimulatory inhibitors/enhancers
 - Inhibitors of tumor-related immune suppressor mechanisms
 - Treg depletors
 - Cellular therapies (dendritic cells; T cells)
 - Chemotherapy
 - Radiotherapy

Toxicology testing for cancer vaccines

Limitations

- Non-human immune systems
- Human antigens in animals
- In practice, little predictive toxicity in animal models, irrespective of vaccine/combination
- Poor predictiveness for starting dose and tolerable dose range
- Opportunities
 - Improving biological models

Recommended approach

- Consider prior safety data on components
- Maximize use of safety data from advanced animal models
- Understand the relevant science
- Adopt a flexible approach in discussion with regulatory authorities

Prior component safety data

- If none, and combination is considered only route forward, combination toxicology only may be considered
- If extensive pre-clinical or clinical component safety data, consider direct progress to Phase I with no/limited combination testing

Animal biology data

- Newly-developed sophisticated animal models
 - Transgenic animals, knock-ins and knockouts
 - Partial humanization of relevant systems
- Discuss prospective collection of safety data in these settings in place of "standard" 1- or 2-species toxicology

Consider the science

- Prior safety data
- Knockout toxic effects
- Plausibility of interactions based on mechanisms of action

Component dose and schedule – Design issues for early clinical studies

- Type of vaccine
- Agent with which vaccine will be combined
- Prior non-clinical experience with each agent alone and in combination
 - safety
 - dose range
 - activity
 - induction of immune responses
 - schedule dependence and interactions
 - pharmacokinetic profile and interactions
- Prior clinical experience with each agent (safety, activity, induction of immune responses)
- Prior clinical and non-clinical experience with similar agents or agents in the same 'class'

Objectives of early clinical trials

- Establish/confirm safety
 - Most vaccines usually lack acute toxicity
 - Vaccine biologic effects often occur across wide dose range
 - Major toxicity interaction predicted to be late autoimmune event
- Optimize biological interactions
 - Dose of agents may be less important than schedule

Component dose and schedule recommendations

- Dose-ranging of vaccine and/or partner may not be necessary when prior clinical experience is available
- May be important to explore schedule interactions
- Immune and tumor response endpoints
 - Use of non-validated immune endpoint may be considered for go/no-go decision
 - Selection of optimal dose/schedule based on anti-tumor effect is difficult in small early stage studies
- Likely to require larger sample sizes per cohort compared to traditional phase 1
 - Statistical input in study design required
- Longer follow-up prior to phase 2 if autoimmune toxicity is possible/expected

Component control in larger trials

- Established regulatory approach to combinations: "A vs A+B vs B"
- Cancer and cancer vaccines are different
 - Cancer vaccines safe but minimal efficacy
 - Treatment of large numbers of cancer patients with ineffective therapies asks a high price for largely predictable effects
- For some combinations, ineffectiveness of individual components is clear from the start
- Avoid "free riding" of non-contributing components

Pivotal trials - what you do depends on what you know

- If vaccine (V) or product (P) are known to be effective:
 - P vs P+V
 - V vs P+V
- V and P known ineffective
 - Control vs V+P
- V is ineffective, P is unknown
 - Phase II trial of P
 - OR, Control vs P vs P+V
- P is ineffective, V is unknown
 - Phase II trial of V
 - OR, Control vs V vs P+V
- V and P are unknown
 - Phase II trials of V and P
 - OR, Control vs V vs P vs P+V

Early stopping to protect patients from ineffective components

- Stopping guidelines for comparative futility on primary endpoint
 - Can be applied to only one arm (eg, drop P early in a Control vs P vs V+P
- Futility based on non-primary surrogate endpoint
- Compare experimental arm to historical control

The problem of agent availability and ownership

- Important agents not yet in development
- Restrictive development plans
- Different owners of each component
 - Complex contract and legal issues
 - Compounded if both investigational
 - Regulatory issues in approving two investigational agents together