NK cells and NKT cells: a brief overview of recognition mechanisms

Jenny Gumperz, Ph.D. Dept. Medical Microbiology and Immunology University of Wisconsin, Madison

Presentation Overview

- I.) What are NK cells?
 - What makes NK cells tick?
 - NK receptors structure and function

II.) • What are NKT cells?

- How do NKT cells become activated?
- NKT cells in anti-cancer responses

I.) What are NK cells?

- Initially: "large granular lymphocytes"
- Kill tumor cells in vitro without prior exposure
- Important producers of T_{H1} cytokines, esp. IFN
- Rapid migration to sites of inflammation
- No memory short lifespan

"fight or flight" lymphocytes

Human peripheral blood lymphocyte staining for NK cells and T cells

What makes NK cells tick? (how are the functions of NK cells regulated?)

- "priming" by exposure to cytokines
 IL-12, IL-2, IFN / , IFN
 - Altered functions from exposure to T_{H2} cytokines?
- Positive and negative signals from cell surface receptors

NK cell regulation by activating and inhibitory receptors

NK cell inhibitory receptors bind:

- HLA class I molecules
 - -Self
 - Allogeneic
- Other "normal" self molecules
 - -CD48
 - _{v 3} integrin
 - -Sialic acid

NK cell activating receptors bind:

- Self molecules that are up-regulated due to cellular stress
 - Neoplastic transformation (MIC A/B)
 - Viral infection
 - Antibody coating (Fc RIII \rightarrow ADCC)
- Normal HLA class I molecules
 Foreign peptides?
- Foreign molecules
 - -Virally encoded proteins

NK cell regulation by "missing self"

NK cell functions are regulated by a finely tuned, and complex, balance of power between diverse activating and inhibitory receptors

NK receptor signaling

- Inhibitory receptors contain "ITIM" motifs

 Activate SHP-1 and -2 tyrosine phosphatases that
 kill signals from other receptors
- Activating receptors use "ITAM" motifs
 - Activate tyrosine kinases to generate a signaling cascade
 - Often provided by association with partner chains

Mouse

Human MHC class I receptors

Receptor	Ligand	Function
CD94/NKG2A	HLA-E	inhibitory
CD94/NKG2C	HLA-E (+ viral peptide?)	activating
KIR2DL	HLA-C (group 1 or 2)	inhibitory
KIR2DS	HLA-C?	activating
KIR3DL	HLA-B (Bw4),	inhibitory
	HLA-A3 or A11 + peptide	
KIR3DS	HLA-Bw4?	activating

NK cell HLA receptor "principles"

- Multiple HLA receptor types per NK cell
- Recognize polymorphic HLA epitopes
- Activating and inhibitory receptors for same ligands
- Inhibitory are "stronger" than activating
- Each NK cell has at least one inhibitory receptor that will bind a self HLA allotype
- Each NK cell usually has additional receptors that will bind allogeneic HLA

Practical implications...

- Different KIR/HLA haplotype combinations have different potentials for activating NK cells
 – disease associations with KIR/HLA type
- Allogeneic BMT will create a new KIR/HLA combination
 - typing and "matching" for both KIR and HLA may improve outcome

End of part I

• Questions?

Murine splenocytes

II.) What are "NKT" cells?

- T cells with NK markers
- Semi-invariant TCR
- Innate functions? ("Germ" independent, rapid response, no memory?)
- CD1d-restricted T cells

CD1 molecules: MHC class I-like antigen presenting molecules

...that present lipids as antigens

CD1⁺ Antigen Presenting Cells

Monocyte

Dendritic Cell

B cell

CD1c CD1d

An unusual glycolipid is recognized by most NKT cells

 β -glucosylceramide (glucocerebroside)

но он HC β-linkage NH HO -ĊH₃ ĊHィ α -galactosylceramide

NK T cells respond strongly to -GalCer, but also (more weakly) to CD1d⁺ APCs without added Ags

Tumor rejection/immunosurveillance

- Activation by -GalCer leads to potent tumor rejection, (pulsed DCs even better)
- Tumor rejection due to administration of exogenous IL-12 is CD1d dependent
- NKT cells contribute to tumor immuno-surveillance via endogenous IL-12 pathway, early IFN
- NKT cells promote effective responses in anti-tumor "vaccine" systems
- CD1d down-regulated on tumor cells from human patients

NKT cell anti-tumor effect

But, paradoxically, in other models...

NKT cells suppressed anti-tumor CTL responses

- IL-13 secretion important

➢NKT cells suppressed anti-tumor responses to UV-irradiation induced sarcomas

CpG oligo-dinucleotides induced anti-tumor responses better in CD1d KO mice

NKT cell suppressive effect

Summary

NK cells

- Rapid cytolytic effectors
- Regulated mainly by cytokines and self
- Complex positive and negative signaling receptors
- Major ligand MHC I

NKT cells

- CD1d-restricted T cells
- Stimulated by self and foreign glycolipid antigens
- Promote and inhibit subsequent immune responses
- Influence functions of DCs?