20th Annual Scientific Meeting of the Society for Biological Therapy

Primer in Tumor Immunology Educational Course: November 10, 2005

Cancer Immunotherapy with T Cells: Vaccines and Adoptive Immunotherapy

Martin A. "Mac" Cheever, M.D. E-mail: maccheever3@mac.com

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- Autologous immune T cells can be used effectively in therapy
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - <u>Hematologic malignancy can be cured by allogeneic T cells</u>
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- Autologous immune T cells can be used effectively in therapy
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo

Probability of relapse after BMT for early leukemia varies according to type of graft and development of GVHD

Complete Response to Donor Lymphocyte Infusion as Therapy for Relapse after HLA-Matched Hematopoietic Cell Transplant

Chronic myeloid leukemia	
Cytogenetic/molecular relapse	40/50 (80)
Hematological relapse	88/114 (77)
Accelerated phase/blast crisis	13/36 (36)
Acute myeloid leukemia/myelodysplastic syndrome	15/58 (26)
Acute lymphoblastic leukemia	3/20 (15)
Multiple myeloma	5/17 (29)
Non Hodgkin lymphoma	

Major Problem of Allogeneic Transplant

 Donor T cells that mediate the graft vs. leukemia effect (GVL) commonly mediate severe and lethal GVHD

Tissue Targets of GVHD vs. GVL

- GVHD
 - Skin
 - Gut
 - Liver
 - Hematopoietic cells
 - Normal cells
 - Leukemia cells
- GVL
 - Hematopoietic cells
 - Leukemia cells
 - Normal cells

Molecular Targets of GVHD vs. GVL

- Peptides from segments of polymorphic proteins that differ between donor and host
 - AKA, minor histocompatibility Ag
- GVHD dominates, if dominant response is to polymorphic proteins expressed primarily by skin, liver and/or gut
- GVL dominates, if dominant response is to polymorphic proteins expressed primarily by hematopoietic cells
- Examples of potential dominant GVL targets
 - Polymorphic segments of hematopoietic differentiation Ag
 - Leukemia specific antigens
 - e.g. bcr-abl joining region segment
 - Aberrantly expressed leukocyte differentiation antigens
 - e.g., WT1, proteinase 3

Organ Targets of Graft vs. Host Disease & Graft vs. Leukemia

(Bleakley & Riddell, Nat Rev 4:2004)

Standard vs. Mini-Transplant

- Standard Transplant (myeloablative)
 - High dose chemotherapy/radiation therapy
 - Eliminates hematopoietic cells (normal & leukemic)
 - Prevents rejection of transplant
 - Leukemia eliminated by both chemotherapy/radiation and GVHD/GVL
- Mini-Transplant: low intensity (non-myeloablative)
 - High dose immunosuppression
 - Prevents rejection of transplant
 - Leukemia eliminated exclusively by GVHD/GVL
- Results
 - Less chemotherapy/radiation therapy related deaths
 - Common GVHD deaths
 - GVHD/GVL is therapeutic in some patients

Mini-Transplants for Leukemia

- 305 patients
 - 46% acute GVHD
 - 15% grade III/IV
 - 43% chronic GVHD
- 45% 2-year mortality
 - 23% Relapse
 - 22% Non-Relapse Mortality
- 40% 2-year relapse free survival

Rash of graft-versus-host disease

Leger, C. S. et al. CMAJ 2004;170:1569-1577

Copyright ©2004 CMA Media Inc. or its licensors

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- Autologous immune T cells can be used effectively in therapy
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo

Mini-Transplants for Renal Cell Cancer

- Cumulative data 6 studies
- 70 patients
 - -6% CR (4 pts)
 - -29% PR (20 pts)
 - 35% Total Response
 - -24% Regimen mortality (17 pts)

(Lundqvist & Childs, J Immunother 28:281, 2005)

(Durable GVT Effect: Metastatic Renal Cell Cancer

30 Days

7 Years

(Lundqvist & Childs, J Immunother 28:281, 2005)

Association of Response with Survival in RCC

(Takahashi & Childs, ClinCaRes 10:6353s, 2004)

Association of GVHD with Response in RCC (n=19)

Course of Breast Cancer Response to Hematopoietic Cell Transplant + Donor Lymphocyte Infusion

Allogeneic Transplant Conclusions

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Highly toxic with a high proportion of treatment related deaths
- Major question for tumor immunology:

Can autologous tumor immune T cells reproduce the therapeutic efficacy of allogeneic transplant without the inordinate toxicity?

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- <u>Cancer cells are immunogenic and can be</u> recognized and killed by autologous T cells
- Autologous immune T cells can be used effectively in therapy
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo

Questions

• Is cancer immunogenic?

• What are the immunogenic targets?

Cancer

- Uncontrolled growth
- Progeny of a single transformed cell
- Multi-step process
- Multiple genetic alterations occurring over many years
- Cumulative effect of genetic alterations on control of cell growth and differentiation

Carcinogenic Polycyclic Hydrocarbons

23

Animal Studies: Tumors Can Elicit Immunity and Immunity Can Protect

- Methylcholanthrene (MCA) induces sarcomas which are progressive and fatal in primary host
 - Resection yields cures
 - Implant into secondary host yields progressive tumor.
 - Reimplant into primary host yields rejection:
 - Specific
 - T cell-mediated
- Major challenge: To manipulate the primary host to augment the existent but ineffective host response to promote tumor eradication

Tumor Antigen Classification

- Tumor-specific antigens
 - Expressed only on tumors
 - Unique
 - Shared
- Tumor-associated antigens
 - Expressed on normal cells
 - Qualitative or quantitative different on tumor

Tumor-Specific Antigens

- Products of genes mutated by chemical & physical carcinogens
 - Normal genes--random DNA mutations
 - Cancer-related genes--non-random DNA mutations
 - ras, p53, bcr-abl
- Antigen receptors
 - Surface immunoglobulin on B cell tumors
 - T cell receptor on T cell tumors
- Oncogenic viruses
 - MuLV, FeLV
 - HTLV, HPV, EBV

Tumor-Associated Antigens

- Normal cellular gene products
 - Oncofetal antigens
 - CEA, alpha-fetoprotein, p97
 - Cancer-testis antigens
 - MAGE-1,3
- Differentiation and lineage-specific antigens
 - MART-1, gp100, tryrosinase, TRP-2
 - PSA, PAP, PSCA, PSMA, Prostein
 - MUC1, EpCam, gangliosides, RBC antigens
 - Proteinase 3
- Overexpressed transformation related proteins
 - p53, HER-2/neu, WT1

Escaping the Immune System - a Model

(Melief, Nature 437:41, Comment on Willimsky & Blankenstein Nature 437:141 2005)

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- <u>Autologous immune T cells can be used effectively in</u> <u>therapy</u>
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo

(Rosenberg NEJM 350:14, 2004)

"Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients With Refractory Metastatic Melanoma"

- 35 pts
- Refractory to high dose IL2
- Regimen
 - Lymphodepleting chemotherapy
 - Autologous tumor-reactive culture expanded T cells
- 18 of 35 (51%) Responders
- 3 (9%) CR all ongoing (7+, 14+, 24+ months)
- 15 (43%) PR
 - Median duration 11.5 months
 - 3 ongoing (13+, 16+, 30+ months)
- At least 50% of melanoma tumors cannot completely resist immune attack!

(Dudley JCO 23:2346, 2005)

Patient 31: Mart-1 Reactive TIL

Dudley et al. JCO (2005)

"Adoptive Cell Transfer Therapy Following Non-Myeloablative but Lymphodepleting Chemotherapy for the Treatment of Patients With Refractory Metastatic Melanoma"

- Requires
 - Evident tumor
 - Multiple cultures/patient
 - 6-8 weeks of culture
- Most effective with high-dose toxic chemotherapy
 - 2 with Pneumocystis pneumonia
 - 1 with EBV lymphoma
 - 1 cortical blindness, progressive multifocal neuropathy
- TIL not uniformly available
 - Obtainable in 81% of patients attempted
 - Fewer than 81% treatable
- Effect on overall survival unknown

Melanoma T Cell Therapy Lessons

- Antigens expressed by tumors can elicit immune responses.
 - Immune T cells can existent in cancer patients and co-exist with cancer cells
 - Cancers can grow despite existent immune T cells
- Antigen-specific T cells can treat established malignancy.
 - Ineffective T cells can be rendered effective by in vitro growth and treatment with increased numbers
- Tumor antigens need not be tumor specific
 - T cell targets can be tissue-specific differentiation antigens

Can Vaccines Increase the Number of Immune T Cells In Vivo and Thereby Reproduce the Therapeutic Effects of T Cell Therapy?

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- <u>Autologous immune T cells can be used effectively in</u> <u>therapy</u>
 - Transferred immune T cells are most effective
 - <u>Vaccines that induce immune T cell responses can be</u> <u>effective, but less so</u>
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo
Cumulative Results: NCI Trials of Solid Tumor Vaccines for Metastatic Disease

- Background
 - 440 patients
 - 96% had melanoma
 - All metastatic
 - Variety of vaccines- peptide, virus-vector, tumor cell, dendritic cell, heat shock protein
- Outcome
 - 1% CR 4 pts
 - 2% PR 9 pts
 - 97% NR 428 pts
 - 2.6% Overall response 13 pts

(Rosenberg et al; Nature Med, 10:2004)

"Tumor Regression and Autoimmunity after Removal of a Functionally Tolerant State of Self-Reactive CD8+ T Cells"

- Pmel-1(gp100) TCR transgenic mice
- B16 melanoma grew normally in pmel-1 TCR TG mice
- Peptide vaccine resulted in only modest delay in subcut tumor growth
- Adoptive transfer of T cells plus vaccine induced T cell infiltration into tumors, but no marked tumor cell death
- Plus IL-2 extensive tumor cell death and loss of tissue integrity

Unimpeded Growth of Antigenic Tumor in TCR TG Mice

T Cells + Vaccine

hgp100 / Vβ13 mAb

T Cells + Vaccine + IL-2

hgp100 + IL-2 / Vβ13 mAb

"Tumor Regression and Autoimmunity after Removal of a Functionally Tolerant State of Self-Reactive CD8+ T Cells"

- The presence of overwhelming numbers of Pmel specific T cells (>95% of CD8+ T cells) did not impact on tumor growth
- Large numbers of antigen specific T cells are necessary, but not sufficient
- One effective regimen employed T cell transfer + vaccine + IL-2
- Other regimens should be as or more effective

"Human Tumor-Specific T Lymphocytes: Does Function Matter More Than Number?"

- Not a tight correlation between vaccine induced T cell response and detectable clinical benefit
- Some pts have a strong response without clinical benefit
- Some pts respond with few detectable anti-tumor T cells
 - Plausible model: anti-vaccine T cells, even at very low frequencies, modify an immunosuppressive environment within a tumor, opening a permissive window for the priming or restimulation of other anti-tumor T cells

(Coulie & Connerotte Curr Opin Imm 17:320, 2005)

- Tumor resistance
- Lymphocyte quiescence
- Too low lymphocyte: tumor ratio

- Tumor resistance
 - Environment not permissive to T cell infiltration
 - Decrease of loss or antigen expression
 - Resistance to lysis or to TRAIL- or Fasinduced apoptosis
 - Contact inhibition of T cells (NK inhibitory receptors)

- Lymphocyte quiescence
 - Shortage of soluble factors (tryptophan, arginine, IL-2, etc.)
 - Inappropriate co-stimulation
 - Immunosuppressive soluble factors (TGFbeta, galectin-1, IL-10, prostoglandins, etc.)
 - Regulatory T cells (Tregs)

- Too low lymphocyte: tumor ratio

 Insufficient expansion of anti-tumor T cell clones
 - T cell apoptosis within tumor

Methods to Increase Efficacy of Cancer Vaccines

- Increase the number and/or function of effector T cells
- Treat smaller amounts of tumor

Vaccine Therapy of Minimal Residual Disease vs. Evident Disease

- Minimal residual disease
 - Increased effector/tumor ratio
 - Less tumor induced immunosuppression
 - Less chemotherapy/radiation therapy induced suppression
 - Increased time for immune response to function
 - Possibly less protection from established tumor stroma
- Proof of efficacy requires large randomized trials

Vaccine Therapy of Heme Malignancy vs. Solid Tumors

- Trials in hematologic malignancy might offer greater likelihood to develop effective vaccines
 - Lymphoma anti-idiotype
 - Leukemia proteinase 3 and WT1
- Possible reasons for better efficacy for heme malignancy
 - Susceptible Targets
 - Leukemia/lymphoma susceptibility to CTL
 - Leukemia/lymphoma susceptibility to Th cytokines
 - Compartment accessibility to T cells

"Complete molecular remissions induced by patient-specific vaccination (Idiotype protein) plus GM-CSF against lymphoma"

- B cell lymphoma
- Immunized to "self" Ig (idiotype determinants)
 - Chemotherapy induced remission
 - Vaccination beginning at 6 months
- Tumor-specific T cells elicited in 19 of 20 patients
- Lymphoma detectable by PCR in 11 patients
- Lymphoma cleared in 8 of 11 patients

Proteinase 3 Leukemia Vaccine

- Proteinase 3
 - Normal granulocyte protein; increased in leukemia
 - Peptide-base vaccine (PR1)
- 42 patients were enrolled,
 - 25 AML, 10 CML, 7 MDS
- 22 patients (49%) had an immune response
 - 4 CR
 - 3 AML
 - 1 CML
 - 2 partial remissions
 - 1 MDS
 - 1 CML

(Molldrem ASH Abstract 259. Presented Dec. 6, 2004: Medscape)

Outline: T Cell & Vaccine Therapy

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- Autologous immune T cells can be used effectively in therapy
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo

Multiple Points of Intervention to Engender Successful Cancer Immunotherapy

(Pardoll & Allison Nature Med, 10:2004)

Examples of potential points of intervention and potential immunotherapeutic drugs to increase the number & therapeutic function of immune T cells in vivo

- Co-stimulatory molecules
 - CD28 & CTLA4
 - Extended B7 family
- Regulatory T cells (CD4+CD25+ Treg)
- T cell growth factors
 - IL-7
 - IL-15

CD28 and CTLA4: Positive & Negative Co-stimulatory Molecules

- Two receptors are necessary for T cell activation
 - TCR
 - Binds to peptide/MHC complex
 - CD28
 - Expressed constitutively on T cells
 - Binds to B7-1 and B7-2 on APC
- TCR + CD28 engagement promotes T cell activation, proliferation, IL2 production
- Subsequent CTLA4 up-regulation and engagement dampens T cell activation

CD28 and CTLA4: Positive & Negative Co-stimulatory Molecules

- CTLA4
 - Not expressed on resting T cells
 - Up-regulated following T cell activation
 - Binds to B7-1 and B7-2 on APC
 - Higher affinity than CD28
 - Antagonizes T cell activation
 - Interferes with IL2 production, IL2 receptor expression and T cell cycle progression

"Combination Immunotherapy of B16 Melanoma Using CTLA-4 and GM-CSF-producing Vaccines Induces Rejection of Subcutaneous and Metastatic Tumors Accompanied by Autoimmune Depigmentation"

- Highly tumorigenic, poorly immunogenic murine melanoma B16-BL6
- Anti-CTLA-4 blockade and vaccination
 - Eradicated established tumors 80% (68/85)
 - Each treatment alone showed little or no effect
- Tumor rejection was dependent on CD8+ T cells
 - Depigmentation occurred in CD4-depleted mice

(van Elsas, Hurwitz, Allison, JEM 190:355, 1999)

T cell infiltration of pulmonary metastasis

Vaccine alone

Vaccine + anti-CTLA4

(van Elsas, Hurwitz, Allison, JEM 190:355, 1999)

(van Elsas, Hurwitz, Allison, JEM 190:355, 1999)

"Autoimmunity Correlates With Tumor Regression in Patients With Metastatic Melanoma Treated With Anti– Cytotoxic T-Lymphocyte Antigen-4"

- 56 patients with progressive stage IV melanoma
 - Anti-CTLA-4 every 3 weeks,
 - Concomitant vaccination with gp100 HLA-A*0201-restricted peptides
- 2 CR (30+ 31+ months)
- 5 PR (4, 6, 25, 26, & 34 months,
- 13% overall objective response
 - Tumor regression seen in lung, liver, brain, lymph nodes, & subcutaneous sites

"Autoimmunity Correlates With Tumor Regression in Patients With Metastatic Melanoma Treated With Anti– Cytotoxic T-Lymphocyte Antigen-4"

- 14 of 56 (25%) experienced grade 3/4 autoimmune toxicity
 - 7 colitis
 - 4 dermatitis
 - 1 uveitis
 - 1 enterocolitis
 - 1 hepatitis
 - 1 hypophysitis
- 5 of 56 experienced grade 1/2 autoimmune toxicity (vitiligo, antinuclear antibodies and pulmonary infiltrates)
- Correlation of autoimmunity with anti-tumor response
 - 36% with autoimmunity had clinical response
 - 5% without autoimmunity had clinical response

(Attia et al (Rosenberg) J Clin Oncol 23:6043-6053 2005)

(Attia et al (Rosenberg) J Clin Oncol 23:6043-6053 2005)

C: Uveitis with posterior synechiae (iris adhesions to the lens) causing irregular pupils D: The same patient, 4 days later, after treatment with topical corticosteroids.

(Attia et al (Rosenberg) J Clin Oncol 23:6043-6053 2005)

Extended B7 Family and Regulatory T cells

- B7-1/B7-2 & CD28/CTLA-4 regulate clonal composition of naive T cells that become activated by antigenbearing DCs migrating into lymphoid organs from peripheral tissues
- B7h & inducible costimulatory molecule (ICOS) promotes T-dependent antibody isotype switching and expansion of effector T cells after clonal expansion of naive T cells, when the differentiated T helper cells (Th) migrate into the follicles
- Programmed death ligands (PDLs) & (PD)-1 regulate effector T cells trafficking into inflamed tissues
- B7-H3 & B7x and BTLA (B and T lymphocyte attenuator) could be last-ditch regulators and control the interaction between effector T cells and the peripheral tissues

(Loke & Allison Arthritis Res Ther 6:208,2004)

Regulatory T cells: (CD4+CD25+ Treg)

- Naturally occurring
- Control immunologic tolerance to self antigens
- Approximately 5-15% of normal CD4+ T cells
- Constitutively express high levels of cell surface
 - CD25 (IL-2Ra)
 - GITR (glucocorticoid-induced THF receptor
 CTLA-4
- Absence is associated with severe autoimmunity

Regulatory T cells: (CD4+CD25+ Treg)

- Functionally competent when isolated ex vivo
- Upon TCR cross-linking
 - Suppress proliferation and IL2 production of responder CD25-CD4+ or CD8+ T cells
 - Contact-dependent manner
- Suppress autoimmunity, tumor immunity, allergy and immunity to chronic infection
 - Carefully timed depletion of CD25+ T cells enhances tumor immunity and autoimmunity

"Intratumor depletion of CD4+ cells unmasks tumor immunogenicity leading to the rejection of late-stage tumors"

- C3B6F1 mice Inoculated s.c. with fibrosarcoma cells
- Identified intratumor growth of CD4+CD25+ T cells

(Yu, et al (Schreiber, Fu) JEM 201 779–7912005)

In vivo Deletion of CD4+ or CD25+ T cells Unmasks Tumor Immunogenicity Leading to the Rejection of Late-stage Tumors

(Yu, et al (Schreiber, Fu) JEM 201 779–791 2005)
<u>Intra-Tumor Deletion</u> of CD4+ or CD25+ T cells Unmasks Tumor Immunogenicity Leading to the Rejection of Late-stage Tumors

Days after tumor inoculation

(Yu, et al (Schreiber, Fu) JEM 201 779–791 2005)

"Cytokine Signals in T-Cell Homeostasis"

(Guimond, Fry & Mackall J Immunother 28, 2005)

"Adjuvant IL-7 or IL-15 Overcomes Immunodominance and Improves survival of the CD8+ Memory Cell Pool"

- Day 0: female mice immunized against male minor histocompatibility antigen complex (HY)
- Days 0-27: rhlL-7 rhlL-15
- Day 28: Quantified male antigen (Uty) tetramer binding T cells

(Melchionda et al (Mackall) JCI 115 2005)

Conclusions

- Cancers can be cured by immune T cells
 - Hematologic malignancy can be cured by allogeneic T cells
 - Solid tumors can also be treated with allogeneic T cells, but less effectively
- Cancer cells are immunogenic and can be recognized and killed by autologous T cells
- Autologous immune T cells can be used effectively in therapy
 - Transferred immune T cells are most effective
 - Vaccines that induce immune T cell responses can be effective, but less so
- Many new biological reagents are available as potential immunotherapeutic drugs to substantially increase the number and therapeutic function of immune T cells in vivo