Induction of Therapeutic Breast Cancer Immunity with an IL-2 Immunotoxin

Keith L. Knutson
Mayo Clinic
Rochester, MN 55906
Breast Cancer is Naturally Immunogenic

- T cells are associated with tumors and correlate with improved survival.

- Several tumor antigens have been identified by virtue of a pre-existent immune response.
Natural immune defense against breast cancer is blocked

- Recruitment of regulatory T cells
- Induction of peripheral tolerance
- Recruitment of immature dendritic cells
- Loss of MHC molecules
Human breast cancer recruits regulatory T cells

Liyanage, et al., 2002
Immunotherapy strategies

Augmenting Immune Effectors
- Cancer vaccines
- Adoptive T cell therapy
- Cytokine therapy
- Monoclonal antibody therapy

Blocking Immunosuppression
- Anti-CTLA-4
- IL-2 Immunotoxin
- Small molecules

Restoring immune recognition
- MHC upregulation

Understanding of tolerance and editing critical to rational design
Tumor development: neu-transgenic mouse

--- Normal epithelium ---

--- No hyperplasia ---

--- In situ ---

--- Hyperplasia ---

--- Carcinoma (80%) ---

Weeks of age

10 20 30 40 50 60 70

Adapted from Boggio et al., J.E. M., 1998, 188:589
Regulatory T cells in the neu-tg mouse

Knutson et al., 2005, submitted
Regulatory T cells associate with breast tumors in the neu-tg mouse
Denileukin Diftitox

Diphtheria toxin fragments A and B (Met1-Thr387) IL-2 (Ala1-Thr133)

Knutson et al., 2005, submitted
IL-2 immunotoxin therapy does not result in lymphopenia.

Knutson et al., 2005, submitted
Depletion of regulatory T cells leads to persistent tumor rejection

Knutson et al, 2005 (submitted)
Denileukin diftitox fails to directly kill CD25-negative tumor cells

Knutson et al., 2005, submitted
Sustained downmodulation of intratumoral regulatory T cells

Knutson et al., 2005, submitted
Reconstitution of regulatory T cells restores normal tumor growth

Knutson et al, 2005 (submitted)
Induction of tumor antigen-specific humoral immunity

Knutson et al, 2005 (submitted)
Breaking tolerance to neu

Knutson et al, 2005 (submitted)
Conclusions

• Natural breast cancer immune defense may be blocked by regulatory T cells.

• Regulatory T cells can be specifically deleted without significant hematopoietic disturbance using targeted immunotoxin.

• Blockade of regulatory T cells can to long-lasting immune rejection of breast cancer without further therapy (e.g. vaccines).

• The window of opportunity following depletion of regulatory T cells may be an opportunity to boost immunity with vaccines or T cell therapy.
Acknowledgements

Cell Therapy Group
(Mayo)
Marshall Behrens
Courtney Erskine
Karin Goodman
Christopher Krco, Ph.D.
Shay Park
Christine Prosperi

Tumor Vaccine Group
(Seattle)
Bond Almand, M.D.
Yushe Dang, Ph.D.
Corazon dela Rosa, BSMT
Mary L. Disis, M.D.
Hailing Lu, Ph.D.
Jason Lukas, M.D. Ph.D.
Lupe Salazar, M.D.
Wolfgang Wagner, Ph.D.

Ligand Pharmaceuticals, Inc.
David Woo, Ph.D.
Karen Brady

Funding provided by:
National Institutes of Health Grants
K01CA100764 (KLK)
R01CA113861 (KLK)
R01CA85374 (MLD)
K24CA85218 (MLD)