IL-2 paradoxically controls tolerance and immunity to established tumors \textit{in vivo}

Paul Andrew Antony, MD
National Cancer Institute

November 11th, 2005
Interleukin-2

“Although it has been 25 years since the identification and initial characterization of IL-2, its precise function in the physiology of the immune system remains enigmatic.”

The IL-2 Paradox

1) Historically IL-2 was called **T cell growth factor** for its ability to grow T cells *in vitro*

2) In contrast, mice which are deficient in IL-2 or its signaling components have lymphoproliferative and multi-organ autoimmune disease

3) Therefore, it appears that the dominant function of IL-2 *in vivo* is the maintenance of self-tolerance

4) It is now accepted that IL-2 maintains T$_{reg}$ cell homeostasis *in vivo*
1) A distinct lineage of CD4$^+$ T cells, which **constitutively** express CD25, CTLA-4, GITR, and Foxp3

2) Express **Foxp3**, a transcription factor, which is related to T$_{\text{reg}}$ function.

3) Need IL-2 for expansion **in vitro** and **in vivo**. Are dysfunctional but present in IL-2$^{-/-}$ and IL-2R$\alpha^{-/-}$ mice, but are completely absent in Foxp3 deficient mice.

T$_{\text{Reg}}$ - CD4$^+$CD25$^+$Foxp3$^+$

T$_{\text{H}}$ - CD4$^+$CD25loFoxp3$^{-}$
The Idea

CD4^+CD25^+ T_R

CD4^+CD25^- T_H → Autoimmune Disease

RAG-1 KO
The Experimental Model

Tumor bearing RAG-1 KO

PF $T_H (+T_R)$ → No Tumor Immunity

PF T_H → Tumor Immunity

P - pmel-1 CD8$^+$ T cells (recognize gp100)
F - Fowlpox hgp100 vaccine
The Experimental Model

A

CD45.1 \(T_R \)

CD45.2 \(T_H \)

B

-7 to -10 d
1 wk
2 wk
3 wk
4 wk

Tumor Inoculation

Treatment

Analyze
Treg cells inhibit and T helper cells augment effective adoptive immunotherapy and autoimmunity

Antony et. al. March 2005, Journal of Immunology
CD4 Response
T\textsubscript{reg} cells and IL-2R signaling control the size of CD4+ T cell compartment

\begin{figure}
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{T\textsubscript{reg} cells and IL-2R signaling control the size of CD4+ T cell compartment.}
\end{figure}

T_{reg} cells and IL-2R signaling control the size of CD4$^{+}$ T cell compartment.
T_{reg} cells require IL-2 from T_{helper} cells for maintenance of the high affinity IL-2R and Foxp3 expression.

A

<table>
<thead>
<tr>
<th></th>
<th>Day 0</th>
<th>Week 3-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treg</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Treg Alone</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Treg/Th WT</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Treg/Th IL-2/-</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>Treg/Th CD25/-</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

* P<0.001

B

<table>
<thead>
<tr>
<th></th>
<th>Treg Alone</th>
<th>Treg (+Th)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxp3 Expression</td>
<td>0</td>
<td>600</td>
</tr>
</tbody>
</table>
T_{reg} **cells require IL-2 from T**_{helper} **cells for maintenance of the high affinity IL-2R**
IL-2 controls the frequency of the T\textsubscript{reg} cell population

A

<table>
<thead>
<tr>
<th>Foxp3</th>
<th>CD25</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>IL-2 KO</td>
</tr>
</tbody>
</table>

FL2-H: CD25 PE
FL1-H: FOXP3 FITC

10^0, 10^1, 10^2, 10^3, 10^4
IL-2 signaling is required for the competitive fitness of Treg cells in the periphery
IL-2 signaling is not essential for T helper cell function but is critical for T\(_{\text{reg}}\) cell function/homeostasis.

A
CD\(_4^+\)CD\(_{25}^-\)\(-\) T\(_H\) cells

Pretransfer
3-4 wks

B

![Flow cytometry graph](image)

- No treatment
- PF
- PF Th CD25 KO (+Treg)
- PF Th CD25 KO

Days Post Treatment
Summary of the CD4 response \textit{in vivo}

1) IL-2 from Th cells regulates CD25 expression on Treg cells in the periphery and controls Foxp3 expression

2) IL-2 signaling is coupled to T_{reg} cell homeostasis and survival/expansion ("fitness") \textit{in vivo} and possibly may also be required for their suppressive mechanism

3) T helper cells do not need high affinity IL-2R to help
CD8 Response
“There is currently no evidence of a role for IL-2 …” with regard towards helping CD8\(^+\) T cell responses \textit{in vivo}.

CD8+ T cells need IL-2 to initiate anti-tumor immunity and maintain their numbers

(a) Tumor Area (mm²)

- No treatment
- PF
- PF Th
- PF Th IL-2 KO
- PF Th CD25 KO

Days Post Treatment

(b) No help

T_reg

T_h WT

T_h (+T_reg)

T_h CD25 KO

T_h IL-2 KO

(c) P > 0.05 NS

P = 0.01

P < 0.05

Number of pmel-1 T cells (x 10⁷)

No help

T_reg

Th

Thc/T_reg

Th IL-2 KO

Th CD25 KO

Vb13
IL-2R signaling is required for CD8$^+$ T cell function *in vivo*

Graph:
- **Legend:**
 - No Treatment
 - P(CD25 KO) V
 - P V

- **X-axis:** Days Post Treatment
- **Y-axis:**
 - 0 to 400

Data Points:
- **P-** pmel-1 naïve T cells (1e6)
- **V-** Vaccinia Virus hgp100
T_{reg} cells suppress generation of the effector response \textit{in vivo}
Summary: CD8\(^+\) T cells and IL-2 *in vivo*

1) CD8\(^+\) T cells need help in the form of IL-2 for effective immunity to self in the absence of Treg cells

2) However, in the presence of Treg cells, IL-2 preferentially activates Treg cells

3) To emphasize this, CD8\(^{CD25KO}\) T cells, which cannot respond to IL-2, do not treat tumors
Conclusions

1) IL-2 signaling appears to be more critical for T_{reg} cells and CD8$^+$ T cells than for CD4$^+$ T helper cells *in vivo*

2) Therefore, exogenous IL-2 therapy may be preferentially expanding T_{reg} cells *in vivo*

3) Therapies that block the activation of Treg cells and enhance T effectors cells will be more beneficial for immunotherapy
Anti-IL-2 plus IL-15 augments adoptive immunotherapy in lymphodepleted mice
Acknowledgements

Crystal Paulos
Doug Palmer
Claudia Wrzesinski
Andrew Kaiser
Paul Spiess
Zhiya Yu
Ciro Piccirillo
Akgül Akpinarli
Chris Klebanoff
Luca Gattinoni

Nick Restifo
Steven Rosenberg