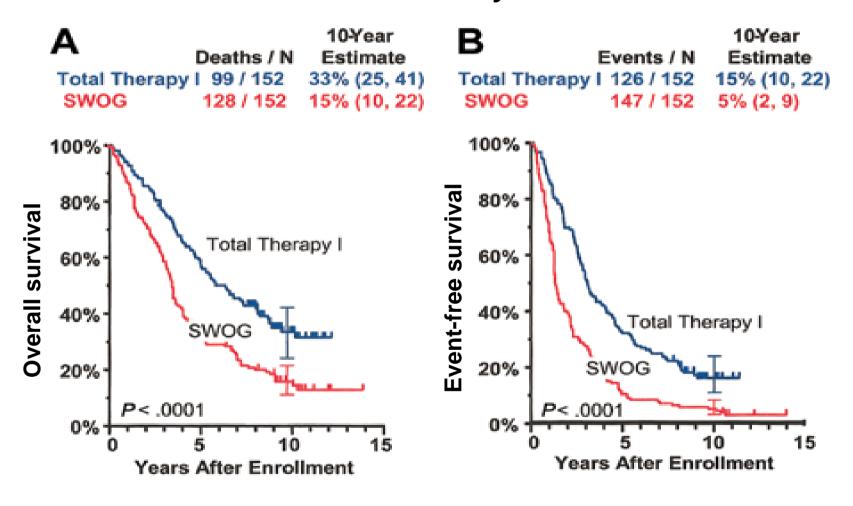
Adoptive Immunotherapy

- Greatest initial success was in the eradication of relapsed CML after allogeneic transplant.
- Also useful in treatment of post-transplant EBVlymphoproliferative disease
- Initial use of unselected leukocytes
- Dosed according to content of CD3+ T cells
- Other component leukocytes, e.g., NK cells, very likely play a role.


Adoptive Immunotherapy

- Success of donor leukocyte infusions has led to the incorporation of immunotherapy as an integral feature of preparative regimens.
- Nonmyeloablative preparative regimens shift the burden of tumor eradication from high-dose conditioning regimens to the donor's immune cells

Adoptive immunotherapy

- Targeted therapy to enhance anti-tumor or antipathogen effect without exacerbating GvHD
 - tumor or virus specific Ag
 - minor histocompatibility Ags
 - specificity conferred by the APC, e.g., DCs
- Role of cytokines in expansion ex vivo or adjuvant administration in vitro.
- Route of administration

Comparison of standard chemoRx (SWOG) vs chemoRx→autograft→IFN maintenance (Total Therapy I), median f/u 9yrs

Barlogie et al., <u>Blood</u>, <u>103</u>: 20-32, 2004

Clinical protocols using dendritic cells to generate Ag-specific T cells for adoptive immunotherapy

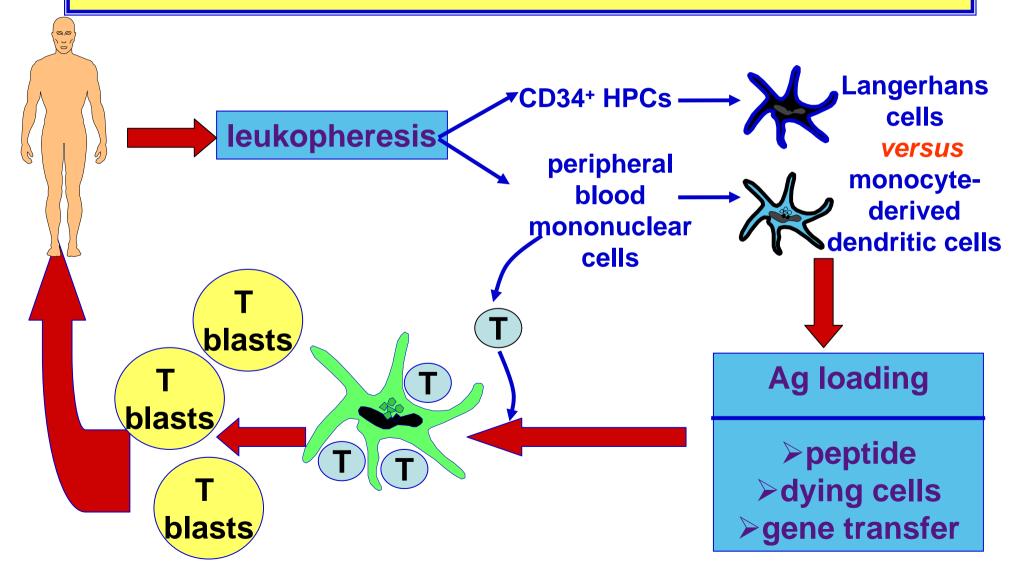
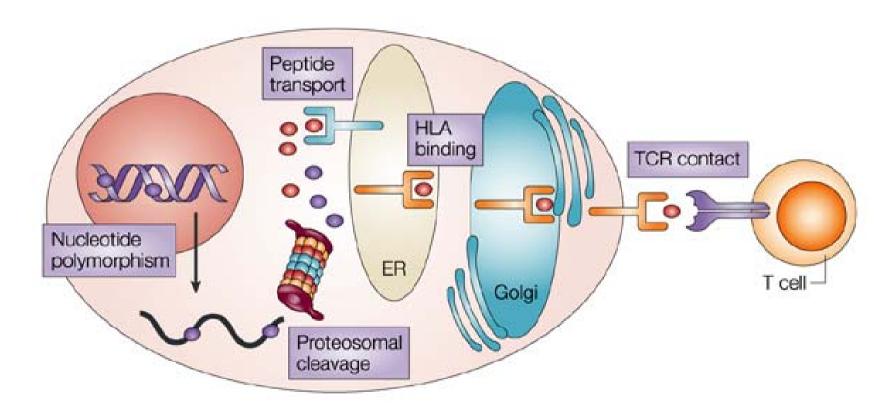


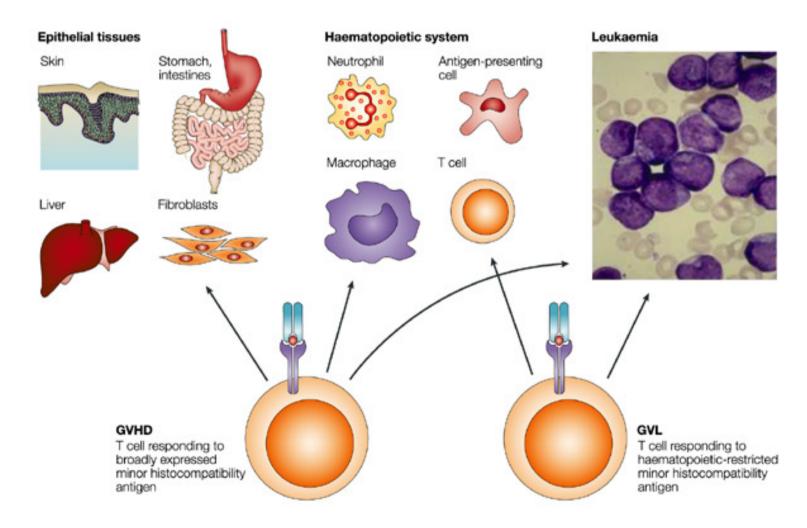
Table 1. Different Sources of Antigens and Antigen-Presenting Cells in Preclinical and Clinical Studies Generating CMV-Specific CTLs

Antigen	Antigen-Presenting Cell	Reference
Virions	Skin fibroblast	Walter et al. [51]
Retroviral vector encoding pp65	B lymphoblastoid cell line	Sun et al. [36]
Adenoviral vector encoding pp65	Dendritic cells	Keever-Taylor et al. [56]
		Hamel et al. [72]
Adenoviral vector encoding pp65	Dendritic cells and B lymphoblastoid cell line	Sifi et al. [58]
CMV antigen derived from CMV-infected lung fibroblasts	Dendritic cells	Peggs et al. [54]
CMV lysate and antigen	Peripheral blood mononuclear cells	Einsele et al. [55]
HLA-A*0201-restricted CMV peptide pp65(495–503)	Dendritic cells and B lymphoblastoid cell line	Szmania et al. [92]
HLA-A*0201-restricted CMV peptide pp65(495–503)	Dendritic cells	Foster et al. [93]

Bollard et al. Biol Blood Marrow Transpl. 10: 143, 2004


Table 2. Published Reports on Use of EBV-Cytotoxic T Cells as Prophylaxis or Treatment for PTLD after BMT

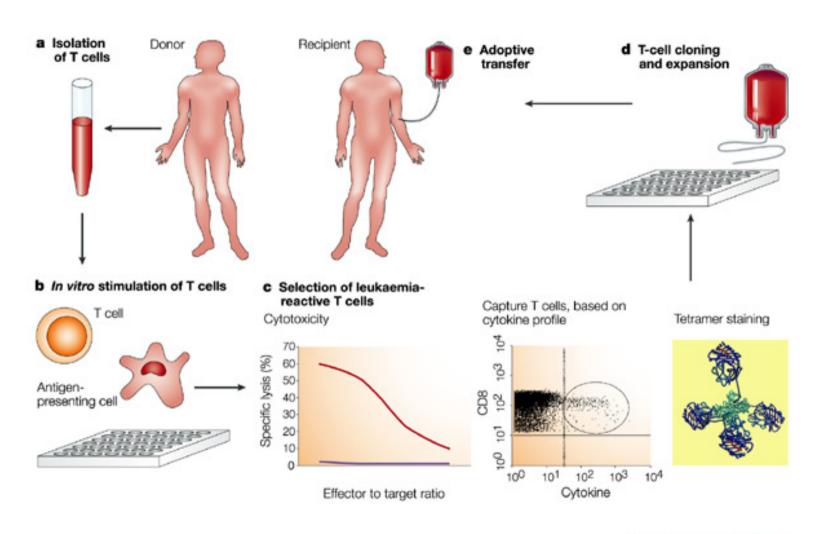
Study	No. Pts. (Age)	Type of Transplant	Path. Evidence of PTLD	Cytotoxic T-Cell (CTL) Lines and Dose	Results
Rooney et	39 (9 mo to 20 y)	T cell-depleted HSCT (mismatch related donor or matched unrelated donor)	No— prophylax is study	Allogeneic (donorderived) EBV CTL: minimum dose of 4 x 10 ⁷ /m ² and maximum dose of 12 x 10 ⁷ /m ²	No patients developed PTLD compared with 11.5% of controls: no toxicity
Rooney et al. [32] and Gottschalk et al. [33]	3 (12– 17 y)	T cell-depleted HSCT	Yes— lymphobl astic lymphom a	Allogeneic (donor- derived) EBV CTL 2–4 × 10 ⁷ /m ²	2 compete remissions, 1 died (no response to CTL secondary to tumor mutation resistant to CTL)
Gustafsson et al. [13]	6 (1– 39 y)	T cell-depleted HSCT or unmanipulated HSCT with ATG/OKT3 conditioning (mismatched or matched unrelated donor or matched related donor)	No— treatment based on increased EBV DNA levels	Allogeneic (donor- derived) EBV CTL 4 × 10 ⁷ /m ²	5 patients had decreased EBV DNA levels. 1 patient subsequently died of PTLD (CTL showed poor specificity for EBV targets on cytotoxicity assay)


PTLD indicates posttransplantation lymphoproliferative disorder.

Bollard et al. Biol Blood Marrow Transpl. 10: 143, 2004

Generation of minor histocompatibility antigens

Distinguishing GvL from GvHD



Minor histocompatibility antigens

Table 2 Advantages and disadvantages of candidate antigens					
Class of target	Advantages	Disadvantages			
Minor histocompatibility antigens	T cells have high avidity for antigen; both CD8+ and CD4+ T cells recognize antigen; potentially multivalent response	Limited to allogeneic transplantation; limited number of defined antigens; potential for GVHD			
Overexpressed normal proteins	Broad applicability for different types of cancer	T cells have low avidity for antigen; potential for toxicity to normal tissues			

GVHD, graft-versus-host disease.

Adoptive immunotherapy with donor T cells to augment GvL

