A Biological Approach for the Treatment of Prostate Cancer

pPSA +/- pIL-18

November 5, 2004

Deborah Marshall, Ph.D.
Rationale for treating prostate cancer with specific-active immunotherapy

- Prostate cancer patients do not have any effective treatments once they fail anti-androgen therapy (large unmet need)

- PSA (prostate specific antigen) is a tissue-specific tumor associated antigen, and is secreted by normal and transformed prostate epithelial cells

- PSA-specific immune responses are detected in some prostate cancer patients, suggesting tolerance may be broken

- An anti-PSA immune response would only destroy the prostate and the tumor; no other tissues should be affected
A DNA vaccine encoding PSA will generate a therapeutic cellular immune response against PSA-expressing tumor cells.

Skewing this response toward Th1 by co-injecting an IL-18 DNA adjuvant plasmid will enhance this immune response.
The breadth of the immune response is important.
DNA Vaccines

pPSA
- PSA cDNA
- hCMV Promoter
- polyA
- Kan'
- Col E1 ori

plL-18
- Murine IL-18 cDNA
- hCMV Promoter
- polyA
- Kan'
- Col E1 ori
Tumor model for evaluation of pPSA/pIL-18 DNA vaccine

1. Inject DNA at Days 0, 14
2. Inject tumor cells on day 21
3. Monitor for tumor growth

pPSA -/+
pIL-18

CT-26/PSA cells
pPSA DNA vaccine protects against tumor development

Long term immune memory response induced
pIL-18 enhances tumor protection in pPSA-immunized mice

100% tumor protection observed when sub-optimal doses of pPSA are co-administered with pIL-18

** p<0.0008
Both CD4 and CD8 T cells are required for PSA-specific anti-tumor immunity

![Graph showing percentage of mice protected over days after challenge](https://example.com/graph.png)
Experimental design for immune response assessments

- pPSA -/+ pIL-18
- Inject DNA at days 0, 14, 28 and 42
- Isolate splenocytes
- Proliferation assay
- Bioplex assay
- CTL assay
- Isolate sera
- Ab
- Proliferation assay
- Bioplex assay
- CTL assay
pPSA +/- pIL-18 induce antibody responses to PSA
pIL-18 enhances Th1 skewing of antibody responses to PSA

Th2/Th1 ratios after one immunization:

- pPSA
- pIL-18

Th2/Th1 ratios after four immunizations:

- pPSA
- pIL-18

Th2 = IgG1
Th1 = IgG2a
pIL-18 immunization enhances early cellular proliferative responses

1 inoculation

2 inoculations

3 inoculations
pIL-18 enhances the kinetics of the CD4⁺ and CD8⁺ T cell response
pPSA + pIL-18 elicits a stronger Th1 response than pPSA alone

IL-2
- EV
- pPSA
- pPSA/pIL-18

Th1
- IFN-γ

IL-4
- EV
- pPSA
- pPSA/pIL-18

Th2
- IL-2 pg/ml
- IL-4 pg/ml
- IL-5 pg/ml

IL-5
- EV
- pPSA
- pPSA/pIL-18

IFN-γ
- EV
- pPSA
- pPSA/pIL-18
pIL-18 enhances the frequency of IFNγ^+ CD4$^+$ and CD8$^+$ T cells
pPSA +/- pIL-18 enhances PSA-specific CTL responses

Effector:Target Ratio

% Lysis

Green – P815/PSA
Red – P815/EV
pIL-18 Immunization enhances early CTL responses

1 – Empty Vector
2 - pPSA
3 - pPSA + pIL-18

1 inoculation
2 inoculations
3 inoculations
Conclusions

♦ pPSA DNA vaccine induces protection against PSA-expressing tumors in a Balb/c syngeneic model

♦ Suboptimal doses of pPSA are protective when pIL-18 is coadministered

♦ Both CD4⁺ and CD8⁺ T cells played an important role in in vivo tumor protection

♦ pPSA DNA vaccine elicited strong Th1 immune responses in Balb/c mice with increased CD4⁺ and CD8⁺ effector T cell frequencies.

♦ pIL-18 enhanced the kinetics and intensity of the antigen-specific Th1 immune response elicited by pPSA

♦ IL-18 is a powerful adjuvant that enhances immune response induction and vaccine efficacy
Acknowledgments

Linda Snyder
Debbie Marshall
Steve McCarthy
Lani San Mateo
Kelly Rudnick
Mike Harris
Karyn Cochlin
Christine McCauley
Frank McCabe
Hillary Millar
Marian Nakada