Newcastle, Australia
CROSS RESISTANCE OF MELANOMA CELLS TO CHEMOTHERAPY AND TRAIL

Peter HERSEY, Xu Dong ZHANG, Susan GILLESPIE and Jing Jing WU

University Of Newcastle
CELL KILLING MECHANISMS USED BY LYMPHOCYTES DEPEND ON INDUCTION OF APOPTOSIS

1. Granzyme – Perforin Mediated Killing
 CD8 CTL (CD4 CTL)
 NK Cells and ADCC

2. TRAIL (FasL, TNF-α) Mediated Killing
 CD4 T Cells
 Monocytes, Dendritic Cells
TRAIL Induces Apoptosis in the Majority of Melanoma Cell Lines
NEW CONCEPTS IN APOPTOSIS

TRAIL, Granzyme B

P53

Noxa, Puma
Bad

Bid

Bcl-2, Bcl-xL, Mcl-1

Bim, Bmf

Cytoskeleton

Bax, Bak

Mitochondria

Smac, Omi
Alternate Pathway

Cyto c, Casp 9
Classical Pathway

IAPs

Effector Caspases

3, 7
Prolonged exposure of melanoma cells to TRAIL results in TRAIL-resistant sub-lines
TRAIL-resistant melanoma cells are cross-resistant to various types of chemotherapeutic drugs
TRAIL-resistant melanoma cells are cross-resistant to various types of chemotherapeutic drugs
TRAIL-resistant melanoma cells are cross-resistant to FasL-induced apoptosis
AT LEAST THREE SIGNAL PATHWAYS INDUCE RESISTANCE TO TRAIL INDUCED APOPTOSIS
TRAIL Induces Rapid Erk1/2 Activation in Melanoma cells
U0126 Sensitises Melanoma to TRAIL-Induced Apoptosis
TRAIL Induces a Marked Increase in Reduction of the Mitochondrial Membrane Potential in the Presence of U0126
Increased Activation of ERK1/2 and Akt in TRAIL-Selected Resistant Cells

Mel-FH
Mel-FH.R
Mel-RM
Mel-RM.R

p-ERK1/2
ERK1/2
p-Akt
Akt
Inhibition of Akt signaling by the PI3-K inhibitor sensitizes melanoma to TRAIL-induced apoptosis
PKC Activation Differentially Regulates Sensitivity of Melanoma to TRAIL-Induced Apoptosis
Sensitization of Melanoma Cells to TRAIL by PMA Is Associated with Deficient PKCε Expression

PKCδ / PKCε

R2=6.4, p=0.0298

% Apoptosis by TRAIL

R2=0.94, p=0.0003

% Apoptosis by PMA+TRAIL
ARE THESE PATHWAYS INVOLVED IN CROSS RESISTANCE TO TRAIL AND CHEMOTHERAPY?
Inhibition of Akt, Erk1/2, or PKC does not sensitize TRAIL-resistant melanoma cells to TRAIL.
Inhibition of Akt, Erk1/2, or PKC does not sensitize TRAIL-resistant melanoma cells to TRAIL.
The expression levels of major anti-apoptotic Bcl-2 and IAP family members remain unaltered in TRAIL-resistant melanoma cells
Alterations in the expression levels of proapoptotic Bcl-2 family members in TRAIL-resistant melanoma cell lines

<table>
<thead>
<tr>
<th>Mel-FH</th>
<th>Mel-FHR</th>
<th>Mel-RM</th>
<th>Mel-RMR</th>
<th>MM200</th>
<th>MM200.R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Apoptotic signaling induced by FasL and SBHA was inhibited upstream of mitochondria in TRAIL-resistant melanoma cells.
Decreased expression of p53 and p21, but not p27 in TRAIL-resistant cells
SUMMARY

- Vincristine, Cisplatin, SBHA show cross resistance with TRAIL
- Inhibition appears to be upstream of Mitochondria
- Activation of ERK and Akt pathways do not seem to be involved
- Selection of P53 variants possibly involved
TRAIL death receptor expression is down-regulated in TRAIL-resistant cells

![Graph showing TRAIL death receptor expression in parental and resistant cells](image)
The “Classical” Extrinsic Signaling Pathway Suggested for TRAIL-Induced Apoptosis

TRAIL → TRAIL-R1 or/and -R2 → FADD → Pro-caspase-8 → Activated caspase-8 → Bid → tBid → Caspase-3 activation → apoptosis

Apoptosome → Bax/Bak

Activated caspase-9
Decreased expression of PKCδ in TRAIL-resistant cells

- Mel-FH
- Mel-FH.R
- Mel-RM
- Mel-RM.R
- MM200
- MM200.R

PKCa
p-PKCa
PKCε
p-PKCε
PKCδ
p-PKCδ
GAPDH
Decreased expression of ICAD and PARP in TRAIL-resistant cells
The Alternative Intracellular Apoptotic Pathway Used by TRAIL in Melanoma Cells

- TRAIL
- TRAIL-R1 or/and -R2
- FADD
- Pro-caspase-8
- Activated caspase-8
- Bid
- tBid
- Caspase-3 activation
- apoptosis
- Bax/Bak
- Smac/DIABLO
- XIAP
TRAIL Is Involved in Killing of Melanoma Cells by CD4 T Cells

% Specific Cytotoxicity
% Apoptotic Cells

% Inhibition of Killing

mAB to TRAIL
mAB to FasL
mAB to TNFα

CD4 Clones

CD4 Clones
Effects of PKC on TRAIL-Induced Caspase-3 Activation, Cleavage of Its Substrates, and Release of Smac from Mitochondria

- Control
- TRAIL
- PMA + TRAIL
- GF109203X + TRAIL

Relative Cell Number

Fluorescent Intensity

Cleavage of PARP and ICAD

Release of Smac