Considerations to overcome downstream resistance to melanoma antigen-specific effector T cells

Thomas F. Gajewski, M.D., Ph.D.
University of Chicago
Recognition of class I MHC-restricted tumor antigen peptides by CD8\(^+\) CTL

Antigen discovery:
- Quickly led to vaccine clinical trials
- Based on notion that fundamental defect in patients is failed T cell priming
- Results: Vaccines often increase specific CD8\(^+\) T cells in blood
- Nonetheless, tumor regressions are rare

Present conundrum:
- Was that the right hypothesis?
- Spontaneously activated melanoma antigen-specific T cells can be found in patients
- Detected in blood and within tumors
- e.g. this is starting point for TIL therapy
- **Points to downstream resistance as dominant defect in many patients**
Tumor escape from the effector phase of an anti-tumor immune response may be a major obstacle.
Melanoma patients can exhibit very high frequencies of circulating Melan-A-specific IFN-γ-producing CD8+ T cells.

HIV control subtracted.
Some melanoma metastases are replete with lymphocytes
Focus on defect in effector phase of immune response in tumor microenvironment
Understanding mechanisms of negative regulation of T cell function in tumor microenvironment

- Candidate processes
 - Inhibitory receptors (e.g. PD-L1/PD-1)
 - Inhibitory cell populations (e.g. Tregs)
 - T cell intrinsic dysfunction (e.g. anergy)

- Analyze tumor microenvironment from metastatic melanoma tumors
 - TIL function, phenotype, and molecular profile
 - Real-time RT-PCR candidates and validation
 - Gene array analysis of stromal elements

Are there drugable targets?
1. PD-1/PD-L1

- PD-1: receptor induced on activated T cells
- Contains ITIM and ITSM domains that can recruit SHP2
- PD-1-deficient mice develop autoimmune syndromes => dominant role is negative
- Two defined ligands: PD-L1/B7-H1 and PD-L2/B7-DC
- PD-L1 can be expressed in non-hematopoietic tissues, including tumor cells
IFN-γ-treated B16.SIY-GFP melanoma stimulates PD-1$^{-/-}$ but not PD1$^{+/+}$ 2C TCR Tg T cells in vitro
PD-1\(^{-/-}\) 2C T cells reject tumors in vivo under conditions in which CTLA-4\(^{-/-}\) 2C cells do not.
IFN-γ upregulates PD-L1 on all human melanoma cell lines tested
PD-L1 mRNA is expressed in fresh melanoma tumor biopsies. Tumor cells also positive by IHC. Therefore, the PD-1/PD-L1 interaction is an important candidate negative regulator of anti-tumor immunity in human melanoma.
2. Regulatory T cells

• Defined by CD4^+/CD25^+ phenotype
• Selectively express the transcription factor FoxP3, and preferentially express the TNFR family member GITR
• Functionally suppress activation of CD4^+ and CD8^+ effector T cells in vitro and in vivo
• Observed to be present in increased numbers in cancer patients and within tumors
B16 melanoma cells expressing the model antigen SIY-GFP grow progressively in vivo.
Spontaneous induction of anti-SIY CD8+ T cells on day 6 in vivo despite lack of tumor rejection
Involvement of CD25+ Tregs in preventing spontaneous rejection of B16.SIY melanoma

TIL FACS analysis

CD25

Tumor day +28

Tumor rejection

Mean tumor diameter (mm)

Time (days)

Whole T cells

CD25− T cells
Human metastatic melanoma biopsies contain FoxP3 and GITR transcripts
CD4^+CD25^+ cells are present among human melanoma TILs

Therefore, regulatory T cells represent an important candidate negative regulator of anti-tumor immunity in human melanoma
3. T cell anergy

- Can result from TCR ligation in the absence of CD28 costimulation by B7-1/B7-2
- Characterized by defective TCR-induced cytokine production and proliferation
- Hypothesized to represent one mechanism of tolerance to tumor antigens
- Reversible by proliferation via cytokines (IL-2, IL-7, IL-15)
Hypo responsiveness of 2C TCR Tg T cells isolated from P1.HTR tumor-bearing P14/RAG2^{-/-} mice (day 28)

- Restimulated 16 hrs with antigen in vitro
- Cytokine production to PMA+Ionomycin intact
Malignant melanoma ascites fluid contains melanoma antigen-specific CD8⁺ T cells bearing an activated phenotype.

Tetramer staining

- Melan-A
- NA17

Additional phenotyping

<table>
<thead>
<tr>
<th></th>
<th>Overall</th>
<th>EBV</th>
<th>Melan-A</th>
<th>NA17-A</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD45RA⁺/CD62L⁻</td>
<td>12.9</td>
<td>1.2</td>
<td>6.2</td>
<td>4.4</td>
</tr>
<tr>
<td>CD45RA⁺/CD62L⁻²</td>
<td>26.2</td>
<td>13.0</td>
<td>20.6</td>
<td>10.2</td>
</tr>
<tr>
<td>CD45RA⁺/CD62L⁻³</td>
<td>4.6</td>
<td>1.2</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>CD45RA⁺/CD62L⁻⁴</td>
<td>56.2</td>
<td>84.6</td>
<td>71.4</td>
<td>93.8</td>
</tr>
</tbody>
</table>

Majority CD45RA⁻, CD62L⁻, CD28⁺
Ascites CD8+ T cells lack perforin and fail to respond to autologous tumor cell line.

Therefore, effector T cell dysfunction represents an important candidate negative regulatory process in human melanoma.
New interventions aiming to potentiate effector phase of anti-tumor T cells in clinical development

1. Interfere with PD-1/PD-L1 interactions
 - Neutralizing anti-human PD-1 mAbs

2. Remove regulatory T cells
 - Deplete in vivo, alone or prior to vaccination
 - Adoptively transfer CD25- T cells

3. Prevent/reverse T cell anergy
 - Transfer into lymphopenic recipients (IL-7-dependent homeostatic proliferation)
 - Intratumoral B7-1 (Fowlpox virus vector)
New interventions aiming to potentiate effector phase of anti-tumor T cells in clinical development

1. Interfere with PD-1/PD-L1 interactions
 – Neutralizing anti-human PD-1 mAbs
2. Remove regulatory T cells
 – Deplete in vivo, alone or prior to vaccination
 – Adoptively transfer CD25- T cells
3. Prevent/reverse T cell anergy
 – Transfer into lymphopenic recipients (IL-7-dependent homeostatic proliferation)
 – Intratumoral B7-1 (Fowlpox virus vector)
Homeostasis-driven T cell proliferation

- Occurs when T cells are transferred into lymphopenic recipients
- Driven by excess available IL-7
- Results in partial activation and differentiation of transferred cells (pseudo-memory phenotype)
- We hypothesized that homeostatic proliferation would restore function and tumor rejection by anergic CD8+ T cells
Peptide-anergized 2C T cells undergo homeostatic proliferation in RAG2\(^{-/-}\) mice.
Anergic 2C T cells recover cytokine production following homeostatic proliferation in RAG2^−/− mice

Pre-transfer

Post-transfer
Anergic 2C T cells reject tumors after homeostatic proliferation in RAG2\(^{-/-}\) hosts.
Wildtype B6 CD8$^+$ T cells dilute CFSE on transfer to RAG$^{-/-}$ but not P14/RAG$^{-/-}$ recipients.
B7-1 transcripts are minimally expressed in metastatic melanoma tumors

TCRβ

CD14

Ig kappa

B7-1
B7-1 expression in tumor allows rejection with at least 10X fewer primed CD8$^+$ effector cells

![Graph showing mean tumor diameter over time for different cell types and B7-1 expression levels.](image-url)
Pilot clinical trial of intratumoral rfTRICOM in melanoma patients with detectable peptide-specific T cells

- HLA-A2+ patients with detectable circulating CD8+ T cells specific for defined melanoma epitopes
- Palpable lesions amenable to injection and biopsy
- Direct intratumoral injection of rfTRICOM (fowlpox virus encoding B7-1, ICAM-1, and LFA-3)
- Core biopsy pre- and post- to assess B7-1, ICAM-1, and LFA-3 expression by real-time RT-PCR
- Clinical response of injected and non-injected lesions assessed
- ELISPOT analysis pre- and post- to measure secondary changes in T cell frequency
rF-TRICOM efficiently transduces human melanoma cell lines in vitro
Additional insights gained by molecular analysis of metastatic melanoma tumors undergoing rejection or progressing

- Real-time RT-PCR for candidate genes and to follow effector phase dynamically
- Affymetrix gene array analysis
 - Aim to find stromal elements that correlate with regression versus progression
Real-time RT-PCR: Increased CD8 transcripts in tumors post-vaccination

Responder

Pre

Post

CD8α ↑ >100-fold

Non-responder

Pre

Post

CD8α ↑ >2000-fold
Affymetrix gene array: expression of IDO by non-responder and arginase by responder
IDO and Arginase

• Indoleamine 2,3-dioxygenase
 – Catabolizes tryptophan, an essential amino acid
 – Expressed in placenta, but also in cells in tumor microenvironment
 – Induced by IFN-γ
 – Leads to T cell hyporesponsiveness and apoptosis
 – Inhibitor, 1-methyl-L-tryptophan, can potentiate anti-tumor immunity in mice

• Arginase I
 – Catabolizes arginine
 – Induced by IL-4/IL-13
 – Expressed by myeloid cells in tumor microenvironment
 – Leads to diminished CD3-ζ expression in T cells, thus blunting TCR signaling
Conclusions

• Sufficient evidence exists to suggest that barriers to immune-mediated tumor regression downstream from T cell priming can be dominant
• New candidates for intervention: PD-1 blockade, depleting Tregs, reversing T cell anergy, and antagonism of IDO or arginase
• Ongoing studies analyzing gene expression profiles of tumor antigen-specific T cells and of cells in the tumor microenvironment from patients should identify major mechanisms that are clinically relevant
• Uncoupling the negative regulation of the effector phase of the anti-tumor immune response should allow an appropriately activated T cell population to mediate effective tumor regression
Acknowledgments

Melan-A vaccine trial
Helena Harlin
Amy Peterson
Susan Swiger
Matthew Sherman

PD-1/PD-L1
Christian Blank
Amy Peterson
Yuan-yuan Zha

Homeostatic proliferation
Ian Brown
Christian Blank
Harald Wouters

Anergy
Allen Ho
Reinhard Marks
Amy Peterson
Ian Brown
Sujit Janardhan
Chiayi Kao

Melanoma gene array
Helena Harlin
Amy Peterson

Metabolism
Candace Cham

Functional genomics core
Vaccine patient #13 (non-responder): immune markers