AME-133: A Next-Generation Anti-CD20 Engineered for Enhanced Killer Function

International Society for Biological Therapy of Cancer
November, 2004

Jim Breitmeyer
Antibody Therapy of Lymphoma

• Rituximab as first-generation biotherapeutic
 – Efficacious in chemoresistant NHL
 – Less toxic than most chemotherapies
 – Multiple potential antitumor activities
 • CDC- Complement dependent cytotoxicity
 • ADCC- Antibody dependent cytotoxicity
 • Direct apoptotic effect (with cross linking)

• Opportunities for improvement
 – Chimeric mouse/human structure
 – Modest affinity for CD20
 – Role of host immune system in efficacy
 • FcR influences response
Influence of FCγRIIIa Polymorphism on Rituximab Efficacy

• Clinical and molecular response to rituximab in chemo-naive follicular NHL
 – Cartron, Blood. 2002; 99:754-758
• Clinical response to rituximab in relapsed follicular NHL
 – Weng, JCO 2003; 21:3940-47
• Clinical response to rituximab in Waldenstrom’s macroglobulinemia
 – Treon, ASH 2002, Poster #2002
• B cell depletion in SLE
 – Anolik, Arth Rheum. 2003; 48:455-459
FCγRIIIa 158 Genotype

<table>
<thead>
<tr>
<th>Prevalence n (%)</th>
<th>VV</th>
<th>VF or FF</th>
</tr>
</thead>
<tbody>
<tr>
<td>PR+CR M1-3 %</td>
<td>92*</td>
<td>59</td>
</tr>
<tr>
<td>PR+CR M6 %</td>
<td>85*</td>
<td>45</td>
</tr>
<tr>
<td>PR+CR M9 %</td>
<td>75*</td>
<td>36</td>
</tr>
<tr>
<td>PR+CR M12 %</td>
<td>75*</td>
<td>26</td>
</tr>
</tbody>
</table>

*p < 0.05 VV vs. VF+FF

Progression Free Survival After Rituximab Correlates with FcγRIIIa Genotype

AME & Antibody Engineering Opportunities

- Potency
 - Association rate
 - Dissociation rate
 - Complement dependent cytotoxicity
 - Cell mediated cytotoxicity (ADCC)
 - Half-life
- Immunogenicity
 - Framework chimeric residues
 - Somatic mutations (framework, V/C)
- Specificity (epitope, cross-reactions)
- Pharmaceutical properties
 - Oxidation sites
 - Deamidation sites
 - Glycosylation sites
 - Protease sites
 - Solubility
 - Production
 - Cost of facilities and goods

Addressed in anti-CD20 engineering
AME Antibody Optimization Technology

- Generate DNA library with directed variability
- Express protein library
- Screen for desired activity
- Iterative cycles to optimize

Increase potency by codon substitution in the antigen-binding region (CDRs)

Murine → Increase potency by codon substitution in the antigen-binding region (CDRs) → Human
Anti-CD20 Antibodies with Fully Human Frameworks and Increased Affinity

- Multiple high affinity variants identified
 - Variants provide tool for characterizing impact of affinity on ADCC, CDC, and apoptosis
- Fully human, common germline frameworks
Fc Optimization - Cell Based Primary Screening with Human PBMC

- >2,400 variants screened
- Multiple novel variants identified

<table>
<thead>
<tr>
<th>% of Wild Type (Average)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>38.62</td>
<td>109.25</td>
<td>19.00</td>
<td>38.62</td>
<td>71.63</td>
<td>7.10</td>
<td>7.54</td>
<td>93.83</td>
<td>100.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>-2.51</td>
<td>0.68</td>
<td>38.19</td>
<td>3.19</td>
<td>-6.19</td>
<td>50.48</td>
<td>102.02</td>
<td>99.37</td>
<td>72.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>87.92</td>
<td>64.14</td>
<td>-4.60</td>
<td>73.30</td>
<td>77.68</td>
<td>77.89</td>
<td>70.41</td>
<td>93.29</td>
<td>93.95</td>
<td>93.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>62.60</td>
<td>101.20</td>
<td>98.51</td>
<td>98.33</td>
<td>-9.62</td>
<td>91.19</td>
<td>114.40</td>
<td>83.05</td>
<td>101.06</td>
<td>97.76</td>
<td>1x wt</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>-0.48</td>
<td>-1.16</td>
<td>-4.58</td>
<td>-3.91</td>
<td>88.42</td>
<td>100.77</td>
<td>99.43</td>
<td>-3.91</td>
<td>-4.82</td>
<td>102.24</td>
<td>1x wt</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>-27.15</td>
<td>106.57</td>
<td>-0.27</td>
<td>113.76</td>
<td>-1.67</td>
<td>2.70</td>
<td>114.73</td>
<td>-4.14</td>
<td>107.90</td>
<td>155.00</td>
<td>2x wt</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>28.79</td>
<td>117.16</td>
<td>117.76</td>
<td>115.95</td>
<td>47.76</td>
<td>93.50</td>
<td>137.20</td>
<td>108.87</td>
<td>102.25</td>
<td>177.36</td>
<td>4x wt</td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>118.66</td>
<td>112.14</td>
<td>118.67</td>
<td>122.80</td>
<td>113.87</td>
<td>108.37</td>
<td>49.71</td>
<td>70.45</td>
<td>114.88</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
AME-133 is More Potent than Rituxan in ex vivo ADCC

Human PBMCs and Wil-2S Target cells; mean +/- 1 SD
AME-133 Retains CDC Activity

![Graph showing the comparison between Rituximab and AME-133 with RFU (Relative Fluorescence Units) on the y-axis and Ab Conc. (µg/ml) on the x-axis. The graph indicates that AME-133 retains CDC Activity.]
Apoptosis

• Rituxan induces apoptosis of Ramos cells (weakly) in the absence of antibody cross-linking
• Induction of apoptosis is enhanced significantly by secondary cross-linking reagents
• AME anti-CD20 variants induce apoptosis in the presence of secondary cross-linking reagents
Summary

• Multiple characteristics of proteins can be improved significantly through optimization
 – Improved efficacy, safety, and potency
 – Enhanced convenience
 – Decreased manufacturing costs
 – Broadened intellectual property
 – Increased understanding of biology

• AME-133, an optimized anti-CD20, will be tested for clinical activity in CD20⁺ oncology indications
Humanization of Antibodies

- Reduces immunogenicity associated with murine Iggs
 - CDR grafting typically diminishes affinity
 - Structural modeling is used to predict framework residues key for maintaining affinity
AME- Applied Molecular Evolution

- San Diego directed evolution company founded in 1989
 - All classes of protein therapeutics engineered
- Partnerships with MedImmune, Centocor, Eli Lilly, Bristol-Myers Squibb, Chiron, Seattle Genetics, CancerVax, Biosynexus
- Application of the protein engineering to in-house projects
 - A development function was added to go from gene to clinic
 - AME-527 (TNF, inflammation) & AME-133 (CD-20, oncology)
- AME and Eli Lilly and Company performed multiple collaborative projects
 - Successes led to discussion on broadened collaboration
 - AME was acquired by Lilly in 2004