Innate Immunity, Inflammation and Cancer

Willem Overwijk, Ph.D. Melanoma Medical Oncology Center for Cancer Immunology Research MD Anderson Cancer Center, Houston, TX

THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

SITC/MDACC - 6/14/2013

www.allthingsbeautiful.com

Innate Immunity and Inflammation

- Definitions
- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

 Innate Immunity: Immunity that is naturally present and is not due to prior sensitization to an antigen; generally nonspecific. It is in contrast to acquired/adaptive immunity. Innate Immunity: Immunity that is naturally present and is not due to prior sensitization to an antigen; generally nonspecific. It is in contrast to acquired/adaptive immunity.

• Inflammation: a local response to tissue injury

- Rubor (redness)
- Calor (heat)
- Dolor (pain)
- Tumor (swelling)

"Innate Immunity" and "Inflammation" are vague terms

 Specific cell types and molecules orchestrate specific types of inflammation

"Innate Immunity" and "Inflammation" are vague terms

 Specific cell types and molecules orchestrate specific types of inflammation

Innate Immunity A ≠ Innate Immunity B
 Inflammation A ≠ Inflammation B

"Innate Immunity" and "Inflammation" can mean many things

 Specific cell types and molecules orchestrate specific types of inflammation

Innate Immunity A ≠ Innate Immunity B
 Inflammation A ≠ Inflammation B

 Some immune responses promote cancer, others suppress it

Innate Immunity and Inflammation

Functions:

- Rapid response to tissue damage
- Limit spread of infection
- Initiate adaptive immune response (T, B)
- Initiate tissue repair

Normal flora Local chemical factors Phagocytes (especially in lung)

Janeway, Immunobiology, 7th Ed.

Protection against infection

Normal flora Local chemical factors Phagocytes (especially in lung)

Wound healing induced Antimicrobial proteins and peptides, phagocytes, and complement destroy invading microorganisms Activation of γ:δ T cells?

Complement, cytokines, chemokines, Phagocytes, NK cells Activation of macrophages Dendritic cells migrate to lymph nodes to initiate adaptive immunity **Blood clotting helps limit** spread of infection

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immune Molecules: Cyclooxygenase-2 (COX-2)

Recognize

inflammation

Causeinflammation

Innate Immune Molecules: Complement System

Recognize

- pathogens
- antibodies
- lectins

Cause

- pathogen clearance
- chemotaxis
- Inflammation

Innate Immune Molecules: type I IFN(-α, β)

- Induced by infection/damage
 Antiviral/Antiproliferative
 Increase innate and adaptive immunity
- Cause inflammation

Innate Immune Cells

Innate Immune Cells

Innate Immune Cells

Danger signals start inflammation

PATHOGENS

DAMAGE

Rubartelli & Lotze, Trends in Immunology 2007

Danger signals start inflammation

PATHOGENS

DAMAGE

Rubartelli & Lotze, Trends in Immunology 2007

Receptors sense Danger: Pathogens

Kawai & Akira, Nat. Immunol. 2010

Receptors sense Danger: Damage

Kawai & Akira, Nat. Immunol. 2010

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Innate Immunity and Inflammation in Cancer

Outcomes vary:

- Promote cancer (Bad inflammation)

- Suppress cancer (Good inflammation)

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Bad Inflammation Causes Cancer

DANGER

cellular damage caused by

- pathogens
- physical damage
- chemicals
- UV
- etc

CHRONIC COLLATERAL DAMAGE <

CHRONIC IMMUNE RESPONSE INFLAMMATION

CHRONIC COLLATERAL DAMAGE

CHRONIC

CHRONIC IMMUNE RESPONSE INFLAMMATION

CHRONIC COLLATERAL DAMAGE

CHRONIC COLLATERAL DAMAGE

cancer: a "never-healing wound"

Dvorak, NEJM 1986

Inflammation can Promote Cancer: collaboration with K-ras mutation

no smoking

4 cigarettes per day

K-ras mutation & normal myeloid cells

Takahashi et al. , Cancer Cell 2010

Inflammation can Promote Cancer: collaboration with K-ras mutation

no smoking

4 cigarettes per day

normal myeloid cells IKK^{-/-} myeloid cells

Takahashi et al., Cancer Cell 2010

Inflammation can Promote Cancer: collaboration with K-ras mutation

no smoking

4 cigarettes per day

Inflammation can Promote Cancer: collaboration with HPV E6/E7 oncogene

De Visser et al., *Cancer Cell* 2005 Andreu et al., *Cancer Cell* 2010

Tumors can induce bad inflammation

Apoptotic Death of CD8⁺ T Lymphocytes After Immunization: Induction of a Suppressive Population of Mac-1⁺/Gr-1⁺ Cells¹

Vincenzo Bronte,²* Michael Wang,[†] Willem W. Overwijk,* Deborah R. Surman,* Federica Pericle,[‡] Steven A. Rosenberg,* and Nicholas P. Restifo³*

The Journal of Immunology, 1998, 161: 5313-5320.

Tumors can induce bad inflammation

Spleen (no tumor)

Spleen (subcut. tumor)

Bronte et al., J. Immunol. 1999

Tumors can induce bad inflammation

Ugel et al., Curr. Opin. Pharmacol. 2010

Tumors can induce bad inflammation Oncogenic STAT3

Yu et al., Nat. Rev. Cancer 2009

Tumors can induce bad inflammation Oncogenic STAT3

Yu et al., Nat. Rev. Cancer 2009

Mutations can Drive Bad Inflammation

Mutated BRAF → tumor cells produce bad, imunosuppressive cytokines

Mutations can Drive Bad Inflammation

Mutated BRAF → tumor cells produce <u>bad, imunosuppressive</u> <u>cytokines</u>

block production of good cytokines in DCs

Sumimoto et al., J. Exp. Med. 2006

Mutations can Drive Bad Inflammation

Mutated BRAF → tumor cells produce <u>bad, imunosuppressive</u> <u>cytokines</u>

promote expression of immunosuppressive molecules

Classic Hallmarks of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Inflammation is (now) a Classic Hallmark of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Inflammation is (now) a Classic Hallmark of Cancer

Mantovani et al., *Nature* 2009 Hanahan & Weinberg, *Cell* 2000

Innate Immunity and Inflammation

Definitions

- Cells and Molecules
- Innate Immunity and Inflammation in Cancer
- Bad Inflammation
- Good Inflammation
- Therapeutic Implications

Good vs. Bad Inflammation in Cancer

Immunity, Inflammation, and Cancer

Sergei I. Grivennikov,¹ Florian R. Greten,² and Michael Karin^{1,*}

Cell 140, 883-899, March 19, 2010

Cancer and Inflammation: Promise for Biologic Therapy

Sandra Demaria,* Eli Pikarsky,† Michael Karin,‡ Lisa M. Coussens,§ Yen-Ching Chen, Emad M. El-Omar,¶ Giorgio Trinchieri,# Steven M. Dubinett, ** Jenny T. Mao, †† Eva Szabo,‡‡ Arthur Krieg,§§ George J. Weiner,III Bernard A. Fox,¶¶ George Coukos,## Ena Wang,*** Robert T. Abraham,††† Michele Carbone,‡‡‡ and Michael T. Lotze§§§

J Immunother • Volume 33, Number 4, May 2010

IFN-γ Suppresses Human Tumor Development

Multiple cutaneous squamous cell carcinomas in a patient with interferon γ receptor 2 (IFN γ R2) deficiency

IFN-γ Suppresses Human Tumor Development

Multiple cutaneous squamous cell carcinomas in a patient with interferon γ receptor 2 (IFN γ R2) deficiency

At 17 years of age, the patient developed multifocal Squamous Cell Carcinomas on the face and both hands. Despite local tumour excision, multiple lesions occurred and the patient died at 20 years of age of disseminated SCC. Inherited disorders of IFN- γ -mediated immunity may predispose patients to SCC.

Human Immune System can Suppress Existing Tumors for Years

1982: patient with primary, resected melanoma

1997: declared disease-free and "cured"

1998: died of brain hemorrhage, donated kidneys

2000: - kidney recipient 1 died of metastatic donor melanoma

- kidney recipient 2 taken off immunosuppression; start IFN- α
- kidney recipient 2 rejects kidney and melanoma

Human Immune System can Suppress Existing Tumors for Years

1982: patient with primary, resected melanoma1997: declared disease-free and "cured"1998: died of brain hemorrhage, donated kidneys

- 2000: kidney recipient 1 died of metastatic donor melanoma
 - kidney recipient 2 taken off immunosuppression; start IFN- α
 - kidney recipient 2 rejects kidney and melanoma

Post-transplant Immunosuppression Increases Cancer Incidence

Vajdic & Van Leeuwen , Int. J. Cancer 2009

Type I IFNs Suppress Growth of Transplanted Tumors

Dunn et al. Nat. Immunol. 2005

IFN-α treatment enhances anticancer vaccination

Sikora et al. J. Immunol. 2009

IFN-α treatment enhances anticancer vaccination

Sikora et al. J. Immunol. 2009

CpG Causes Tumor Inflammation and Intratumoral T cell Accumulation

Intratumoral PBS

Intratumoral CpG

Intravenous CpG

CpG Causes Tumor Inflammation and Intratumoral T cell Accumulation

Choice of vaccine adjuvant controlsT cell trafficking to tumor

Hailemichael et al. , Nat. Med. 2013

Bottom Line: Inflammation can be Good or Bad: Pro or Anti-Tumor

Table 1. Roles of Different Subtypes of Immune and Inflammatory Cells in Antitumor Immunity and Tumor-Promoting Inflammation		
Cell Types	Antitumor	Tumor-Promoting
Macrophages, dendritic cells, myeloid-derived suppressor cells	Antigen presentation; production of cytokines (IL-12 and type I IFN)	Immunosuppression; production of cytokines, chemokines, proteases, growth factors, and angiogenic factors
Mast cells		Production of cytokines
B cells	Production of tumor-specific antibodies?	Production of cytokines and antibodies; activation of mast cells; immunosuppression
CD8 ⁺ T cells	Direct lysis of cancer cells; production of cytotoxic cytokines	Production of cytokines?
CD4 ⁺ Th2 cells		Education of macrophages; production of cytokines; B cell activation
CD4 ⁺ Th1 cells	Help to cytotoxic T lymphocytes (CTLs) in tumor rejection; production of cytokines (IFNγ)	Production of cytokines
CD4 ⁺ Th17 cells	Activation of CTLs	Production of cytokines
CD4 ⁺ Treg cells	Suppression of inflammation (cytokines and other suppressive mechanisms)	Immunosuppression; production of cytokines
Natural killer cells	Direct cytotoxicity toward cancer cells; production of cytotoxic cytokines	
Natural killer T cells	Direct cytotoxicity toward cancer cells; production of cytotoxic cytokines	
Neutrophils	Direct cytotoxicity; regulation of CTL responses	Production of cytokines, proteases, and ROS

Grivennikov et al. Cell 2010

• COX-2 inhibitor Aspirin, Celecoxib (colorectal)

- COX-2 inhibitor
- VEGF blocker

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several)

- COX-2 inhibitor
- VEGF blocker
- IL-1β blocker

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several) IL-1Ra (MM)

- COX-2 inhibitor
- **VEGF** blocker
- IL-1 β blocker

Aspirin, Celecoxib (colorectal) Bevacizumab, Sorafenib (several) IL-1Ra (MM) Cytokine Regulators Lenalidomide (MDS, MM)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker

- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker

- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)
- Remove suppressors Cycl/Fludar + T cells (melanoma)

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker
- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)
- Remove suppressors Cycl/Fludar +
 - Cytotoxic Therapy? cancers)

- Cycl/Fludar + T cells (melanoma)
- Radiation/Chemother. (all

- COX-2 inhibitor
- VEGF blocker
- IL-1 β blocker
- Cytokine Regulators Lenalidomide (MDS, MM)
- Kill Helicobacter Pylori Clarithrom./Amoxicillin (gastric)
- Remove suppressors
- Cytotoxic Therapy? cancers)
- Targeted Therapy? TKI ir

- Cycl/Fludar + T cells (melanoma)
- Radiation/Chemother. (all
- TKI inhibitors (many cancers)

Bacteria
 BCG (bladder)

- Bacteria BCG (bladder)
- TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)

- Bacteria BCG (bladder)
- TLR agonists

- Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
- Cytokines IL-2 (melanoma, renal) IFN-α (melanoma, renal, CML)

- Bacteria BCG (bladder)
 - TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
 - IL-2 (melanoma, renal) IFN-α (melanoma, renal, CML)
- Antibodies

Cytokines

es aCTLA4/aPD(L)-1 mAb (melanoma)

- Bacteria BCG (bladder)
 - TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
 - IL-2 (melanoma, renal) IFN- α (melanoma, renal, CML)
 - aCTLA4/aPD(L)-1 mAb (melanoma)
 - Danger/inflammation? (cervical)
- Antibodies

Cytokines

• Surgery

• Bacteria BCG (bladder)

- TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
- Cytokines IL-2 (melanoma, renal)
 IFN-α (melanoma, renal, CML)
- Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
 - Surgery Danger/inflammation? (cervical)
- Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)

• Bacteria BCG (bladder)

- TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
- Cytokines IL-2 (melanoma, renal)
 IFN-α (melanoma, renal, CML)
- Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
 - Surgery Danger/inflammation? (cervical)
- Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)
 - T cells Adoptive T cell Transfer (melanoma)

• Bacteria BCG (bladder)

- TLR agonists Imiquimod (basal cell carcinoma) CpG (B cell lymphoma)
- Cytokines IL-2 (melanoma, renal)
 IFN-α (melanoma, renal, CML)
- Antibodies aCTLA4/aPD(L)-1 mAb (melanoma)
 - Surgery Danger/inflammation? (cervical)
- Hem. Stem Cells Stem Cell Transpl. (leukemia, lymphoma)
- T cells Adoptive T cell Transfer (melanoma)
 - Vaccine PAP-loaded DCs (prostate)

How therapeutics may promote cancer

- induce mutation (chemotherapy)
- induce inflammation (cytokines, TLR agonists, agonistic antibodies)
- change the microbiome (antibiotics, foods)?

 block cells/factors that suppress cancer CD8⁺ T cells/NK cells type I IFN, IFN-γ TNF-α - lymphoma? IL-15? IL-12/IL-23 IL-17A?

- Innate Immunity & Inflammation can promote or suppress cancer
- Manipulating immunity can promote or suppress cancer
- Understanding of inflammatory cells & molecules in cancer is limited but growing, allowing therapeutic intervention

1. What is the importance of Innate immunity and Inflammation (I&I) in cancer?

a)I&I can **prevent** the development and/or progression of cancer

b)I&I can **promote** the development and/or progression of cancer

c)I&I plays an important role in the induction of therapeutic anti-cancer immune responses

d)All of the above.

2. Inducing inflammation is effective to treat cancer

a) Yes

b) No

c) Yes, especially inflammation that increases VEGF, IL-10, and MDSCs and Tregs

d) Sometimes, for example inflammation that increases IFN-gamma, cytotoxic T cells, and Type I macrophages

3. The immune system can sometimes suppress tumor growth

a) Yes, because transplant patients on immunosuppressive drugs get more of certain types of cancer

b) No, because the immune system did not evolve to fight cancer

- 4. Smoking can cause cancer by:
- a) Damaging DNA
- b) Causing tissue inflammation
- c) Damaging DNA and causing tissue inflammation

d) Smoking doesn't cause cancer, it's a conspiracy theory funded by the political party I'm not voting for.

5. Causing systemic inflammation is an effective way to treat cancer

a) Yes, because the systemic inflammation systemically activates the immune system

b) No, because systemic inflammation causes aberrant migration of immune cells

c) Yes, because systemic inflammation is usually completely non-toxic