Therapeutic Cancer Vaccines: Successes and Failures in the Clinic

Joe Baar, MD, PhD
Associate Professor of Medicine
Seidman Cancer Center
Tumor Vaccines

- >100 years ago, W. B. Coley reported regression of tumors with injected bacterial extracts.
- Attempts to harness the immune system to mediate the rejection of tumors *in vivo*.
- Important discoveries in immunology and tumor cell biology: opportunities to explore the therapeutic potentials of cancer vaccines.
Tumor Vaccines

“To increase host’s immunity to own tumor”
Tumor Vaccines: The Successes
Tumor Vaccines Currently Being Used

- Peptide Vaccines
- Gene-Modified Cellular Vaccines
- Dendritic Cell Vaccines
Tumor Vaccines Currently Being Used

- Peptide Vaccines
- Gene-Modified Cellular Vaccines
- Dendritic Cell Vaccines
Peptide Vaccines

CD4 or CD8 T-Cell

TCR

Cell Surface Proteins

Class I TAA

MHC Class I

Tumor

Class II TAA

MHC Class II
Peptide Vaccines

- Overexpressed proteins (HER-2/neu)
- Oncogenes (ras)
- Embryonic proteins (MAGE)
- Viruses (HPV, HBV)
- Tissue specific proteins (MART-1/Melan-A, gp100, tyrosinase, PSA, PSMA)
- Mutated tumor suppressors (p53)
- Modified proteins (MUC-1)
- Idiotypic epitopes (B cell lymphoma)
Clinical Trial Results of the HER-2/neu (E75) Vaccine to Prevent Breast Cancer Recurrence in High-Risk Patients:
From US Military Cancer Institute Clinical Trials Group Study I-01 and I-02

Elizabeth A. Mittendorf, MD1, Guy T. Clifton, MD2, Jarrod P. Holmes, MD3, Kevin S. Clive, MD2, Ritesh Patil, MD4, Linda C. Benavides, MD2, Jeremy D. Gates, MD2, Alan K. Sears, MD2, Alexander Stojadinovic, MD5, Sathibalan Ponniah, PhD6, and George E. Peoples, MD2,6
Timeline

Figure 1.
E75 vaccine trial schema. IND = Investigational New Drug.

Cancer 2012 May 15; 118(10): 2594-2602
Clinicopathologic Characteristics of Evaluable Patients in the E75 Vaccine Trials by Treatment Group at 24-Month Landmark Analysis

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Vaccinated, n = 106, No. (%)</th>
<th>Controls, n = 76, No. (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, y</td>
<td></td>
<td></td>
<td>.38</td>
</tr>
<tr>
<td>Median</td>
<td>57</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>Range (28–78)</td>
<td>(32–83)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
<td>.19</td>
</tr>
<tr>
<td>White (89.6%)</td>
<td>95</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Black (4.7%)</td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Other (5.7%)</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Time to enrollment in trial in days</td>
<td></td>
<td></td>
<td>.25</td>
</tr>
<tr>
<td>Median</td>
<td>472</td>
<td>435</td>
<td></td>
</tr>
<tr>
<td>Tumor size</td>
<td></td>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>T1 (67.0%)</td>
<td>71</td>
<td>46</td>
<td></td>
</tr>
<tr>
<td>T2 (24.5%)</td>
<td>26</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>T3 (6.6%)</td>
<td>7</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>T4 (1.9%)</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Nodal status</td>
<td></td>
<td></td>
<td>.13</td>
</tr>
<tr>
<td>N0 (51.9%)</td>
<td>55</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>N1 (36.8%)</td>
<td>39</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>N2 (8.5%)</td>
<td>9</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>N3 (2.8%)</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Other tumor characteristics</td>
<td></td>
<td></td>
<td>.45</td>
</tr>
<tr>
<td>Histologic grade 3</td>
<td>40 (38.8%)</td>
<td>30 (41.1%)</td>
<td>.88</td>
</tr>
<tr>
<td>ER and PR negative</td>
<td>33 (31.7%)</td>
<td>14 (18.4%)</td>
<td>.06</td>
</tr>
<tr>
<td>HER2 overexpression</td>
<td>30 (30.3%)</td>
<td>18 (26.5%)</td>
<td>.61</td>
</tr>
<tr>
<td>Trastuzumab</td>
<td>12</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Treatment</td>
<td></td>
<td></td>
<td>.13</td>
</tr>
<tr>
<td>Hormonal therapy</td>
<td>70 (66.0%)</td>
<td>57 (76.0%)</td>
<td>.19</td>
</tr>
<tr>
<td>Chemotherapy</td>
<td>79 (74.5%)</td>
<td>54 (71.1%)</td>
<td>.62</td>
</tr>
<tr>
<td>Radiation therapy</td>
<td>77 (72.8%)</td>
<td>62 (81.8%)</td>
<td>.22</td>
</tr>
<tr>
<td>Received optimal dose of vaccine</td>
<td></td>
<td></td>
<td>N/A</td>
</tr>
<tr>
<td>Yes</td>
<td>37 (34.9%)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>69 (65.1%)</td>
<td>N/A</td>
<td></td>
</tr>
</tbody>
</table>
E75 Dosing Regimens for Breast Cancer Node-Positive and Node-Negative Patient Groups by Trial Design

<table>
<thead>
<tr>
<th>Patient Group</th>
<th>Patients, No.</th>
<th>Peptide Dose, μg</th>
<th>GM-CSF Dose, μg</th>
<th>Months Vaccinated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Node positive</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100.250.6</td>
<td>2</td>
<td>100</td>
<td>250</td>
<td>0, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>500.250.4</td>
<td>6</td>
<td>500</td>
<td>250</td>
<td>0, 1, 2, 5</td>
</tr>
<tr>
<td>500.250.6</td>
<td>5</td>
<td>500</td>
<td>250</td>
<td>0, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>1000.250.4</td>
<td>11</td>
<td>1000</td>
<td>250</td>
<td>0, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>1000.250.6</td>
<td>27</td>
<td>1000</td>
<td>250</td>
<td>0, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Node negative</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>500.125.3</td>
<td>10</td>
<td>500</td>
<td>125</td>
<td>0, 1, 5</td>
</tr>
<tr>
<td>500.125.4</td>
<td>9</td>
<td>500</td>
<td>125</td>
<td>0, 1, 2, 5</td>
</tr>
<tr>
<td>500.250.4</td>
<td>12</td>
<td>500</td>
<td>250</td>
<td>0, 1, 2, 5</td>
</tr>
<tr>
<td>500.250.6</td>
<td>13</td>
<td>500</td>
<td>250</td>
<td>0, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>1000.250.6</td>
<td>11</td>
<td>1000</td>
<td>250</td>
<td>0, 1, 2, 3, 4, 5</td>
</tr>
<tr>
<td>Total</td>
<td>106</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cancer 2012 May 15; 118(10): 2594-2602
Disease-Free Survival

Figure 2.
24-month disease-free survival for all vaccinated patients compared with unvaccinated control patients.

Cancer 2012 May 15; 118(10): 2594-2602
DFS by Subgroups

Figure 3.
24-month disease-free survival (DFS) determined for clinicopathologic subgroups. DFS was compared between vaccinated patients and unvaccinated controls in patients with (A) node-positive breast cancer, (B) HER2 low-expressing (IHC 1+ or 2+ or FISH < 2.0) breast cancer, and (C) low-grade (grade 1 or 2) breast cancer.
Conclusion

• E75 + GM-CSF vaccine effective in certain subsets of patients (HER2 low, positive LN, low grade)
• Boosting is beneficial
• Ongoing phase 3 trial comparing E75 + GM-CSF to GM-CSF alone in HLA-A2+/A3+ patients
Tumor Vaccines Currently Being Used

- Peptide Vaccines
- Gene-Modified Cellular Vaccines
- Dendritic Cell Vaccines
Gene-Modified Cell Therapy
Gene Therapy

- Cytokines (GM-CSF, IL-12)
- Tumor Antigens
- Viral Genes
- MHC Genes
- Co-Stimulatory Molecules
A Lethally Irradiated Allogeneic Granulocyte-Macrophage Colony Stimulating Factor-Secreting Tumor Vaccine for Pancreatic Adenocarcinoma: A Phase II Trial of Safety, Efficacy, and Immune Activation

Eric Lutz, PhD*,§§, Charles J. Yeo, MD**, Keith D. Lillemoe, MD††, Barbara Biedrzycki, NP*, Barry Kobrin, PhD*, Joseph Herman, MD, MSc†, Elizabeth Sugar, PhD††, Steven Piantadosi, MD, PhD***, John L. Cameron, MD‡, Sara Solt, BS*, Beth Onners, RN*, Irena Tartakovsky, MS*, Miri Choi, BS*, Rajni Sharma, PhD§, Peter B. Illei, MD§, Ralph H. Hruban, MD*,§, Ross A. Abrams, MD††, Dung Le, MD*, Elizabeth Jaffee, MD***,§§,†††, and Dan Laheru, MD*
Methods

Surgical resection

First vaccine

Adjuvant radiation and chemotherapy

2nd, 3rd, 4th, 5th Vaccinations

0 4 8 10 16 20 24 28 32 36 40 44 48 72

Weeks

Amylase, CBC with differential and platelets, and complete chemistry profile for toxicity; CA19-9 and CT scans for recurrence; PBL and serum for immune analyses.

Amylase, CBC with differential and platelets, and complete chemistry profile for toxicity; CA19-9 and CT scans for recurrence; PBL and serum for immune analyses.

DFS and OS

17.3 months (14.6-22.8)

24.8 months (21.2-31.6)

Ann Surg. 2011 February; 253(2): 328–335
OS compared to SOC

V=24.8 months (21.2-31.6)
C=20.3 months (18.0-23.9)
Postimmunotherapy enhancement of mesothelin-specific CD8+ T cell responses in HLA-A0101+ and HLA-A201+ patients correlates with disease-free survival.
Tumor Vaccines Currently Being Used

- Peptide Vaccines
- Gene-Modified Cellular Vaccines
- Dendritic Cell Vaccines
DC Vaccines

- **Tumor**
- **DC**
 - MHC Class I
 - MHC Class II
 - TAA
 - TCR
- **CD8+ CTL**
 - TAA
 - TCR
- **CD4+ T-Helper**
 - TAA
 - TCR
Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory PC.

Small EJ, Schellhammer PF, Higano CS et al

J Clin Oncol 2006; 24: 3089-3094
Methods

A Stages in sipuleucel-T treatment

- Patient’s white blood cells harvested by leukapheresis
- Short-term culture with protein ‘cassette’
- GM-CSF
- PAP
- Shipping
- Cells infused BACK into patient (IV)

B Proposed mechanism of action of sipuleucel-T in prostate cancer

- Recombinant PAP antigen combines with resting APC
- APC takes up antigen
- Antigen is processed and presented on surface of APC
- Fully activated APC = sipuleucel-T

- Sipuleucel-T activates T cells
- Activated T-cells proliferate and attack tumour cells
Results

Fig 2. Primary end point, time to disease progression (intent-to-treat population). HR, hazard ratio.

Fig 3. Final overall survival (intent-to-treat population). HR, hazard ratio.
Kaplan-Meier Estimates of Overall Survival

N= 512
2:1 randomization
1° endpoint: OS

HR: 0.78 (0.61-0.98) P=0.03

HR: 0.65 (0.47-0.90) P=0.009

Vaccines: The Challenges

- Cytokines (IL-10, TGF-β)
- Tumor
- CTL
- Fas FasL
- VEGF
- TAA
- Tregs/MDSC
- DC
Summary

• Significant advances in the basic science of tumor immunology
• Some clinical trials report sustained responses and survival advantage in patients with advanced cancer
Future Directions

• Patients who have failed conventional cancer treatment → Patients who have completed conventional treatment
• HLA-restricted → HLA-unrestricted
• Preventive vaccines
• CMT: Sx + CT + RT + BT