What you need to know about innate immunity

Jennifer Ko MD, PhD Cleveland Clinic Immunology/Pathology and Laboratory Medicine

Innate Immunity

First line of defense, immediate defense
 Day to day protection

- Only when innate defense bypassed, evaded or overwhelmed is adaptive immunity required
- Non-specific
- Recognize pathogens in a generic way
- Does not confer long lasting or protective immunity to host
- Evolutionarily older, found in primitive organisms

Receptor characteristic	Innate immunity	Adaptive immunity
Specificity inherited in the genome	Yes	No
Expressed by all cells of a particular type (eg, macrophages)	Yes	No
Triggers immediate response	Yes	No
Recognizes broad classes of pathogen	Yes	No
Interacts with a range of molecular structures of a given type	Yes	No
Encoded in multiple gene segments	No	Yes
Requires gene rearrangement	No	Yes
Clonal distribution	No	Yes
Able to discriminate between even closely related molecular structures	No	Yes
Figure 2-10 Immunobiology, 6/e. (© Garland Science 2005)		

Innate Immunity and Inflammation

1) Respond rapidly to tissue damage physical and chemical barrier recruitment of immune cells to site of injury 2) Limit spread of infection identification and removal of foreign substances activation of the complement cascade activation of coagulation cascade 3) Initiate adaptive immune response antigen presentation and cytokine production 4) Initiate tissue repair

Innate Immunity – Physical/Chemical Barriers

Breach of physical barrier \rightarrow

-"resting" innate immune cells become activated to kill microbes, secrete cytokines to recruit and activate additional leukocytes, and to promote systemic killing and removal of microbes.

Adherence to epithelium	Local infection, penetration of epithelium	Local infection of tissues	Adaptive immunity
	XX		
	Protection ag	ainst infection	
Normal flora Local chemical factors Phagocytes (especially in lung)	Wound healing induced Antimicrobial proteins and peptides, phagocytes, and complement destroyinvading microorganisms Activation of γ:δ T cells?	Complement, cytokines, chemokines, Phagocytes, NK cells Activation of macrophages Dendritic cells migrate to lymph nodes to initiate adaptive immunity	Infection cleared by specific antibody, T-cell dependent macrophage activation and cytotoxic T cells

Figure 2-3 Immunobiology, 6/e. (© Garland Science 2005)

Innate Immunity- 1st responders

Innate Immunity-Monocytes/Macrophages

- Monocyte-derived macrophages "large eaters" or histiocytes, are present in all tissues
- "Sentinels" of immune system survey for "foreign" invaders
- Foreign microbes are recognized via various cell surface and intracellular receptors
- Receptor ligation and cytokines causes macrophage activation
- Activated macrophages
 - Digest and present antigens from microbes
 - Produce chemokines, cytokines, other molecules to recruit other immune cells

Macrophage Phagocytosis

1. RECOGNITION AND ATTACHMENT

3. KILLING AND DEGRADATION

 Macrophages kill internalized microbes via reactive oxygen and nitrogen species

Microbe killing= Phagosome + lysosome = phagolysosome

 Nitric oxide (nitric oxide synthase, iNOS₂)

•Superoxide anion (NADPH oxidase, respiratory burst)

•Hydrogen peroxide (superoxide dismutase)

Phagocyte Toll receptors are stimulated by Pathogen Associated Molecular Patterns (PAMPs)

Nature Reviews | Microbiology

NOD-like receptor (NLR) proteins are intracellular pattern recognition receptors (PRRs)

Induced Innate Responses mediated by cytokines secreted by stimulated sentinel cells

Class	Chemokine	Produced	Receptors	Cells attracted	Major effects	Class	Chemokine	Produced by	Receptors	Cells attracted	Major effects
схс	CXCL8 (IL-8)	Monocytes Macrophages Fibroblasts	CXCR1 CXCR2	Neutrophils Naive T cells	Mobilizes, activates and degranulates		CCL3 (MIP-1a)	Monocytes T cells Mast cells Fibroblasts	CCR1, 3, 5	Monocytes NK and T cells Basophils Dendritic cells	Competes with HIV-1 Antiviral defense Promotes T _H 1 immunity
	(12-0)	Keratinocytes Endothelial cells	UXUN2	Naive I cens	neutrophils Angiogenesis		CCL4 (MIP-1 <i>β</i>)	Monocytes Macrophages Neutrophils Endothelium	CCR1, 3, 5	Monocytes NK and T cells Dendritic cells	Competes with HIV-1
	CXCL7 (PBP, β-TG	Platelets	CXCR2	Neutrophils	Activates neutrophils Clot resorption						
	NAP-2)	i Pire			Angiogenesis		CCL2 (MCP-1)	Monocytes Macrophages Fibroblasts Keratinocytes	CCR2B	Monocytes NK and T cells Basophils Dendritic cells	Activates macrophages Basophil histamine release Promotes T _H 2 immunity
	CXCL1 (GRO α) CXCL2 (GRO β)	Monocytes Fibroblasts	CXCR2	Neutrophils Naive T cells	Activates neutrophils Fibroplasia						
	CXCL3 (GRO γ)			Fibroblasts	Angiogenesis		CCL5 (RANTES) T cells Endothelium Platelets CCL11 (Eotaxin) Endothelium Monocytes Epithelium T cells	Endothelium	CCR1, 3, 5	Monocytes NK and T cells Basophils Eosinophils Dendritic cells	Degranulates basophils Activates T cells Chronic inflammation
	CXCL10 (IP-10)	Keratinocytes Monocytes T cells Fibroblasts	CXCR3	Resting T cells NK cells	Immunostimulant Antiangiogenic Promotes T _H 1						
		Endothelium		Monocytes	immunity				Eosinophils		
	CXCL12 (SDF-1)	Stromal cells	CXCR4	Naive T cells Progenitor	B-cell development Lymphocyte homing			Epithelium	CCR3	Monocytes T cells	Role in allergy
	CXCL13 (BLC)	Stromal cells	CXCR5	(CD34 ⁺) B cells B cells	Competes with HIV-1		CCL18 (DC-CK)	Dendritic cells	3	Naive T cells	Role in activating naive T cells
Figure 2-41 pa	Contraction of the second second second	ogy, 6/e. (© Garland Scie		D CEIIS	cymphocyte nonning	с	XCL1 (Lymphotactin)	CD8>CD4 T cells	CXCR1	Thymocytes Dendritic cells NK cells	Lymphocyte trafficking and development

CXXXC

(CX₃C)

CX3CL1

(Fractalkine)

NK cells

T cells

CX₃CR1

Monocytes

Leukocyte-endothelial

Brain inflammation

adhesion

Monocytes

Endothelium

Microglial cells

Figure 2-41 part 2 of 2 Immunobiology, 6/e. (© Garland Science 2005)

Innate Immunity-Macrophage

Cytokine mediated vascular dilation and vascular permeability facilitate neutrophil extravasation into infected tissues

-Macrophage activation causes degradation of membrane phospholipids and rapid production of prostaglandins, leukotrienes and platelet-activating factor which act with cytokines directly on smooth muscle and endothelial cells Cytokine induced adhesion → cytokines and chemokines mediate neutrophil weak and firm adhesion to vascular endothelium

Innate Immunity- 1st responders

Neutrophils

- Essential to innate immunity, hallmark of acute inflammation
- Most prevalent WBC in blood with 50-100 billion produced per day
 - 55% bone marrow weight dedicated
- Migrate in response to IL-8, C5a, leukotrienes, fMLP via chemotaxis
 - Circulate 5.4 days, live in tissue 1-2 days
 - Limit propagation of certain pathogens
 - Limit host damage due to inflammation
 - Phagocytosed by macrophages after pathogen digestion

Neutrophil NET formation

Innate Immunity-Macrophage

Cytokines from PAMP-stimulated sentinel cells stimulate the production of acute phase proteins, which opsonize a large spectrum of pathogens bearing common pathogen associated molecular patterns

There are two innate mechanisms by which complement can be activated: the lectin pathway and the alternative pathway

Complement feeds forward to activate and increase macrophage and neutrophil phagocytosis

Figure 2-32 Immunobiology, 6/e. (© Garland Science 2005)

Complement can form the membrane attack complex, which leads to the lysis of target pathogens

Figure 2-35 Immunobiology, 6/e. (© Garland Science 2005)

The spread of viruses is limited by the interferon response

Viral nucleic acids stimulate the production of interferon by the infected cell, which mediates both autocrine and paracrine protective responses

Innate Immunity- 1st responders

NK cells

•Overlap innate and adaptive immunity

 Stimulated by Type I interferons

•Kill cells with down-regulated MHC I expression

•Down-regulated by viruses and tumors trying to avoid CD8+ T-cell killing

•Kill "non-self" via mostly shared mechanisms with cytotoxic T-cells

- •TRAIL
- •GranzymeB
- •Perforin

Innate Immunity and Inflammation

1) Respond rapidly to tissue damage physical and chemical barrier recruitment of immune cells to site of injury 2) Limit spread of infection identification and removal of foreign substances activation of the complement cascade activation of coagulation cascade 3) Initiate adaptive immune response antigen presentation and cytokine production 4) Initiate tissue repair

Adaptive response initiation: Antigen presentation to T cells

The context in which macrophage-derived dendritic cells present antigen to T-cells determines the type of adaptive T cell response that follows

Hallmarks of Cancer: The Next Generation

Douglas Hanahan^{1,2,*} and Robert A. Weinberg^{3,*}

¹The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland ²The Department of Biochemistry & Biophysics, UCSF, San Francisco, CA94158, USA

^aWhitehead Institute for Biomedical Research, Ludwig/MIT Center for Molecular Oncology, and MIT Department of Biology, Cambridge, MA 02142, USA

*Correspondence: dh@epfl.ch (D.H.), weinberg@wi.mit.edu (R.A.W.) D0I10.1016/j.ceil.2011.02.013

An Emerging Hallmark: Evading Immune Destruction

An Enabling Characteristic: Tumor-Promoting Inflammation

Cell

Immune surveillance in cancer

- Carcinogen-induced tumors arise more frequently and quickly in immunodeficient mice
- Cancer cells that arise in immunodeficient mice are inefficient at initiating secondary tumors in syngeneic immunocompetent mice

Immune surveillance in cancer

- Heavy CTL and NK cell infiltration predicts improved outcome in several human tumors
- Immunosuppressed organ transplant recipients develop donor-derived cancer from ostensibly tumor-free donors

Immune escape in cancer

- Clinically apparent tumors variably suppress the anti-tumor immune response
- Tumor-associated inflammation can enhance tumor progression

Chronic Inflammation has a known role in cancer initiation

■ Tobacco, asbestos \rightarrow Bronchial CA

- Alcohol → Hepatocellular CA, Gastric CA, Pancreatic CA
- Helicobacter pylori → MALT lymphoma
- Shistosoma \rightarrow bladder CA
- HCV → Hepatocellular CA
- HPV \rightarrow Cervical CA
- Endogenous inflammation in inflammatory bowel disease
 → Colon CA
- Barrett's esophagus \rightarrow Esophageal CA

nature immunology volume 11 number 10 october 2010

Macrophage and chemotherapy

TAM modulate responses to chemotherapy

- Macrophages and DCs are known to mediate "immunogenic cell death" (ICD) which some chemotherapies induce in some tumor models
 - release of "eat-me" signals (e.g. ATP and high-mobility group B1 [HMGB1]) from dying tumor cells enhanced by some chemotherapies
 - monocyte activation and enhancement of their APC capacity and promotion of T cell responses against immunogenic tumors
- Antitumor activity of some cytotoxic agents may depend on their ability to reprogram pro-tumoral macrophages

Macrophage and chemotherapy

TAM depletion (anti-CSF1 antibodies) enhances the efficacy of some combination chemotherapy

- cyclophosphamide, methotrexate, and 5-fluorouracil in chemoresistant, human breast cancer xenografts in immunodeficient mice
- Paclitaxel in immunocompetent mice via increased anti-tumor CD8+ Tcell responses when macrophages were depleted
- Macrophage-derived cathepsins protect cancer cells from the direct cytotoxic effects of several chemotherapeutics
 - CathepsinB \rightarrow inflammasome \rightarrow IL-1b \rightarrow IL-17 \rightarrow blunted chemo effect
- Macrophage-derived factors activate STAT3 in cancer stem cells to promote chemoresistance
- Ultimate effect may depend on tumor immunogenicity, sensitivity of macrophages to drug, and the inherent state of the macrophages in the particular tumor

Macrophages initiate a wound reparative program that enhances tumor regrowth

Neutrophil

Potential

Tumor cell
killing
through
reactive
oxygen
species???

Reality

- Genotoxicity associated with neutrophil ROS may initiate cancer
- Neutrophilia, and high neutrophil:lymphocyte (N:L) ratio associated with poor outcome in multiple tumor types
- Promote angiogenesis
- Anti-tumor T-cell suppression
- Tumor cell migration, invasion and metastasis

NK cells

Prevent tumor progression • Immunosurveillance \rightarrow Elimination phase Cell stress Non-self (low or absent MHC I) Prevent tumor metastasis Attack tumor emboli in the lungs NK cell tumor targeting can be inhibited by platelets "Pseudo-self"

Summary

Function of Innate Immunity

- 1) Respond rapidly to tissue damage
- 2) Limit spread of infection
- 3) Initiate adaptive immune response
- 4) Initiate tissue repair
- Innate Immunity in Cancer
 - Neutrophils
 - Promote tumor initiation
 - Promote tumor spread
 - Macrophages
 - Pro and anti- tumor effects in tumor initiation
 - Promote tumor spread
 - NK cells
 - Inhibit tumor initiation
 - Inhibit tumor spread

1) What is the importance of innate immunity in cancer?

- A) Innate immunity initiates malignant transformation via neutrophil-derived genotoxic stress
- B) Innate immunity eradicates transformed tumor cells via NK recognition of non-self or cell stress
- C) Innate immunity promotes tumor spread via myeloid cell mediated CD8+ T cell inhibition
- D) Innate immunity promotes tumor spread via angiogenesis upregulation
- E) All of the above

2) Which of the following is not a function of Macrophages?

- A) Phagocytosis and presentation of microbes or tumorassociated antigens to T-cells
- B) Upregulation of acute phase protein production and systemic inflammatory response
- C) Extrude a web of fibers composed of chromatin and serine proteases that trap and kill microbes extracellularly
- D) Promote wound healing through increased angiogenesis
- E) All of the above are functions

3) Complement cascade can be activated by the lectin pathway and the alternative pathway?

A) TrueB) False

4) Tumor associated macrophages are mostly M2polarized, which is desirable for tumor eradication?

A) TrueB) False

5)Tumor infiltrating neutrophils promote tumor cell invasion and metastasis via matrix metalloproteinases ?

A) TrueB) False