Immune Potentiating Cytokines

Howard L. Kaufman, MD
An Introduction to Cytokines

• General mechanisms of action
• FDA-Approved Cytokines for Cancer Immunotherapy
 – Interferon-α2b (Intron-A)
 – Pegylated interferon-α2b (Sylatron)
 – Interleukin-2 (Proleukin)
• Other Cytokines in Development
General mechanism of cytokine signaling
Interferons

- Type I
 - α: from neutrophils, m
 - β: from fibroblasts, epithelial cells

- Type II
 - γ: from T, NK cells

- Immunomodulatory effects
 - MHC class I/II upregulation
 - Modulation of T/NK cell cytolytic activity
 - Modulation of macrophage/DC function
 - Decreased Treg/increased Th1
 - Inhibition of angiogenesis
Interferon Signaling
Interferon Administration

• Induction Phase
 – 20 Million Units/m² IV Monday through Friday for 4 weeks

• Maintenance Phase
 – 10 Million Units/m² SQ M-W-F for 11 months

• Dose reductions or discontinuation for toxicity
E1684: Estimated Relapse-Free Survival

Probability of relapse-free survival

Arm	Median RFS
IFN-2b (n=143) | 1.72 yr
Observation (n=137) | 0.98 yr

P=0.0023
E1684: Estimated Overall Survival

<table>
<thead>
<tr>
<th>Arm</th>
<th>Median OS</th>
</tr>
</thead>
<tbody>
<tr>
<td>IFN 2b</td>
<td>3.82 yr</td>
</tr>
<tr>
<td>Obs</td>
<td>2.78 yr</td>
</tr>
</tbody>
</table>

Probability of survival

Arm IFN 2b (n=143)
Arm Observation (n=137)

P=0.0237

Meta-analysis of IFN effect on DFS

<table>
<thead>
<tr>
<th>Study</th>
<th>HR</th>
<th>LL</th>
<th>UL</th>
<th>SE</th>
<th>Patients</th>
<th>Events (IFN/control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCCTG (Creagan, 1995)</td>
<td>0.76</td>
<td>0.56</td>
<td>1.04</td>
<td>0.16</td>
<td>264</td>
<td>77/85</td>
</tr>
<tr>
<td>E1684 (Kirkwood, 1996)</td>
<td>0.67</td>
<td>0.50</td>
<td>0.88</td>
<td>0.14</td>
<td>287</td>
<td>90/103</td>
</tr>
<tr>
<td>AMCG (Fehamberger, 1998)</td>
<td>0.61</td>
<td>0.40</td>
<td>0.93</td>
<td>0.21</td>
<td>311</td>
<td>37/57</td>
</tr>
<tr>
<td>FCGM (Grob, 1998)</td>
<td>0.74</td>
<td>0.56</td>
<td>0.98</td>
<td>0.14</td>
<td>499</td>
<td>100/119</td>
</tr>
<tr>
<td>E1690 (Kirkwood, 2000)</td>
<td>0.81</td>
<td>0.65</td>
<td>1.01</td>
<td>0.11</td>
<td>642</td>
<td>236/254</td>
</tr>
<tr>
<td>SMG (Cameron, 2001)</td>
<td>0.80</td>
<td>0.52</td>
<td>1.23</td>
<td>0.22</td>
<td>96</td>
<td>32/35</td>
</tr>
<tr>
<td>E1694 (Kirkwood, 2001)</td>
<td>0.67</td>
<td>0.53</td>
<td>0.85</td>
<td>0.12</td>
<td>880</td>
<td>98/151</td>
</tr>
<tr>
<td>WHO (Cascinelli, 2001)</td>
<td>0.88</td>
<td>0.60</td>
<td>1.28</td>
<td>0.20</td>
<td>444</td>
<td>162/158</td>
</tr>
<tr>
<td>E2696 (Kirkwood, 2001)</td>
<td>0.59</td>
<td>0.32</td>
<td>1.07</td>
<td>0.31</td>
<td>107</td>
<td>28/38</td>
</tr>
<tr>
<td>UKCCCR (Hancock, 2004)</td>
<td>0.91</td>
<td>0.75</td>
<td>1.10</td>
<td>0.10</td>
<td>674</td>
<td>211/215</td>
</tr>
<tr>
<td>EORTC18871 (Kleeberg, 2004)</td>
<td>1.05</td>
<td>0.84</td>
<td>1.31</td>
<td>0.11</td>
<td>484</td>
<td>159/218</td>
</tr>
<tr>
<td>EORTC18952 (Eggermont, 2005)</td>
<td>0.88</td>
<td>0.75</td>
<td>1.03</td>
<td>0.08</td>
<td>1388</td>
<td>596/328</td>
</tr>
<tr>
<td>DeCOG (Garbe, 2008)</td>
<td>0.69</td>
<td>0.51</td>
<td>0.94</td>
<td>0.16</td>
<td>296</td>
<td>84/102</td>
</tr>
<tr>
<td>EORTC18991 (Eggermont, 2008)</td>
<td>0.84</td>
<td>0.72</td>
<td>0.97</td>
<td>0.08</td>
<td>1256</td>
<td>322/361</td>
</tr>
</tbody>
</table>

Morcellin et al. JNCI 2010
Meta-analysis of IFN effect on OS

<table>
<thead>
<tr>
<th>Study</th>
<th>HR</th>
<th>LL</th>
<th>UL</th>
<th>SE</th>
<th>Patients</th>
<th>Events (IFN/control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NCCTG (Creagan, 1995)</td>
<td>0.90</td>
<td>0.64</td>
<td>1.25</td>
<td>0.17</td>
<td>264</td>
<td>68/72</td>
</tr>
<tr>
<td>E1684 (Kirkwood, 1996)</td>
<td>0.73</td>
<td>0.54</td>
<td>0.99</td>
<td>0.15</td>
<td>287</td>
<td>81/90</td>
</tr>
<tr>
<td>FCGM (Grob, 1998)</td>
<td>0.70</td>
<td>0.49</td>
<td>0.98</td>
<td>0.17</td>
<td>499</td>
<td>59/76</td>
</tr>
<tr>
<td>E1690 (Kirkwood, 2000)</td>
<td>0.98</td>
<td>0.76</td>
<td>1.24</td>
<td>0.12</td>
<td>642</td>
<td>194/186</td>
</tr>
<tr>
<td>SMG (Cameron, 2001)</td>
<td>0.86</td>
<td>0.54</td>
<td>1.35</td>
<td>0.23</td>
<td>96</td>
<td>31/36</td>
</tr>
<tr>
<td>E1694 (Kirkwood, 2001)</td>
<td>0.72</td>
<td>0.52</td>
<td>0.99</td>
<td>0.16</td>
<td>880</td>
<td>52/81</td>
</tr>
<tr>
<td>WHO (Cascinelli, 2001)</td>
<td>0.95</td>
<td>0.76</td>
<td>1.20</td>
<td>0.12</td>
<td>444</td>
<td>146/138</td>
</tr>
<tr>
<td>UKCCCR (Hancock, 2004)</td>
<td>0.94</td>
<td>0.74</td>
<td>1.17</td>
<td>0.12</td>
<td>674</td>
<td>151/156</td>
</tr>
<tr>
<td>EORTC18871 (Kleeberg, 2004)</td>
<td>0.98</td>
<td>0.77</td>
<td>1.23</td>
<td>0.12</td>
<td>484</td>
<td>137/202</td>
</tr>
<tr>
<td>EORTC18952 (Eggermont, 2005)</td>
<td>0.91</td>
<td>0.76</td>
<td>1.07</td>
<td>0.09</td>
<td>1388</td>
<td>534/292</td>
</tr>
<tr>
<td>DeCOG (Garbe, 2008)</td>
<td>0.62</td>
<td>0.44</td>
<td>0.86</td>
<td>0.17</td>
<td>296</td>
<td>65/88</td>
</tr>
<tr>
<td>EORTC18991 (Eggermont, 2008)</td>
<td>1.00</td>
<td>0.84</td>
<td>1.18</td>
<td>0.09</td>
<td>1256</td>
<td>256/257</td>
</tr>
</tbody>
</table>

Morcellin et al. JNCI 2010
Common Interferon Toxicity

- Flu-like syndrome: Acetaminophen/benadryl
- Fatigue: Dose reduction, if severe
- Cytopenias: Dose reduction, if severe
- Increased LFTs: Dose reduction, if severe
- Weight loss: Dose reduction, if severe
- Alopecia
Less Common Interferon Toxicity

- Nausea/vomiting: Anti-emetics
- Diarrhea: Anti-diarrheals
- Hypotension: Fluids, dose reduce
- Depression: Anti-depressants
- Cough: Symptomatic
- Dry mouth: Fluids
- Skin rash: Moisturizers
- Irritability: Dose reduce
Pegylated Interferon

Drug with Low Solubility
Short Biological Half Life
Unstable in Biological Fluid

+ PEG
(Polyethylene glycol)

Solubility Enhancement
Prolonged Biological Half Life
Increased Stability
PEG-Interferon Administration

• Induction phase
 – 6 mcg/kg SQ weekly for 8 weeks
• Maintenance Phase
 – 3 mcg/kg SQ weekly for up to 5 years
• Dose reduction or discontinuation for toxicity
Pegylated IFN vs. Observation in Resected Stage III Melanoma

Recurrence-free Survival

Overall Survival

Eggermont et al. Lancet 2008
PEGylated IFN in N1a Disease

Recurrence-free Survival

Overall Survival

Eggermont et al. Lancet 2008
PEGylated IFN in N1b Disease

Recurrence-free Survival

Overall Survival

Eggermont et al. Lancet 2008
PEGylated IFN in patients with ulcerated primary melanomas

Eggermont et al. JCO 2012
Induction of autoimmunity correlates with survival in IFN-α treated patients

Relapse-free Survival

Overall Survival

Gogas et al. NEJM 2006
Interleukin-2 (IL-2)

- Natural biologic immunomodulatory agent
- T cell growth factor
- Proliferation of T cells and NK cells
- Promotes the killing activity of these cells
- Powerful anti-tumor effects in animal studies
- Extensively evaluated in patients with cancer
- FDA approved for metastatic renal cell in 1992
- FDA approved for metastatic melanoma in 1998
Interleukins and Their Receptors

Cytokine produced by:
- IL-2: T cells and DCs
- IL-4: T cells, NKT cells, eosinophils and mast cells
- IL-7: stromal cells, epithelial cells and fibroblasts
- IL-9: T cells
- IL-15: monocytes, DCs and epithelial cells
- IL-21: CD4+ T cells and NK T cells
- TSLP: stromal cells, epithelial cells, fibroblasts, mast cells and basophils

Receptor expressed by:
- IL-2Rα
- IL-1Rα
- IL-4Rα
- IL-7Rα
- IL-9Rα
- IL-15Rα

Margolin, Lazarus and Kaufman 2013
IL-2 Receptor

- Binds chain
- Forms heterotrimeric complex
- Signals through and c chains
- Induces T cell growth and promotes survival

Malek and Bayer, Nature Immunol Rev, 2004
Mechanism(s) of IL-2 anti-tumor activity

Malek and Bayer, Nature Rev Immunol 2004
Tregs exhibit a paradoxical response to IL-2 treatment

Cesana et al. JCO 2006
High-dose Bolus rIL-2 Regimen

- IL-2 600,000 IU/kg every 8 hours by 15-minute IV infusion for a maximum of 14 doses
- 9-16 day rest period
- Repeat schedule for another 14 doses
- Maximum 28 doses per course of therapy
- No dose reductions are performed during high-dose IL-2 therapy
- Excessive toxicity treated by withholding dose or discontinuing treatment for that cycle
Patient Selection for IL-2 Treatment

- ECOG performance status 0 or 1
- Adequate pulmonary function
 - FEV1 and FVC $\geq 75\%$ of predicted
 - No evidence of symptomatic pulmonary disease
- Normal cardiac function
 - For patients >50 years of age or with ischemic symptoms, consider stress thallium or other stress tests
- Adequate renal function
 - Creatinine levels should be ≤ 1.6 mg/dL

Patient Selection (cont)

- Adequate hepatic function
 - Bilirubin \leq 2.0 g/dL
 - SGOT $< 3 \cdot$ ULN, unless due to liver metastases
- Adequate hematologic function
 - ANC \geq 1500/mm3
 - Platelets $> 100,000$
 - Hemoglobin \geq 9.0 gm/100 mL
- No CNS metastases (unless adequately treated)
 - MRI brain within one month
- No corticosteroids
IL-2 Toxicity

- Most side effects are preventable
- Nearly all side effects are reversible
- All side effects can be managed by qualified physicians and nurses

- Management begins with pre-treatment screening
Vascular Leak Syndrome

- Increased capillary permeability
 - Decreased vascular resistance
 - Breakdown of blood-brain barrier
 - Neuropsychiatric toxicity
 - Hypovolemia
 - Hypotension
 - Fluid retention/weight gain
 - Rales/SOB
 - Diarrhea
 - Edema/ascites
 - Pleural effusion
 - Hypoperfusion
 - Sinus tachycardia
 - Myocardial ischemia
 - Decreased renal perfusion
 - Prerenal azotemia
 - Oliguria and anuria

Used with permission from Lori Stover, RN.
Pivotal High Dose IL-2 Trials: The NCI Experience

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>No. of Patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>CR</td>
</tr>
<tr>
<td>Melanoma</td>
<td>182</td>
<td>12(6.6)</td>
</tr>
<tr>
<td>Renal Cell</td>
<td>227</td>
<td>21(9.3)</td>
</tr>
<tr>
<td>Total</td>
<td>409</td>
<td>33(8.1)</td>
</tr>
</tbody>
</table>

High-dose IL-2 for Renal Cell Carcinoma

- 115 patients
- Renal cell carcinoma
- 720,000 IU/kg (147)
- Median follow-up 52 months
- No mortality

Yang, Cancer J, 1997
High-dose IL-2 for Melanoma

- 270 patients, 1985-93
- Melanoma
- 600,000 IU/kg (118)
- 720,000 IU/kg (147)
- 6 (2.2%) mortality
 - 5/6 had ECOG PS 1
 - Bacterial sepsis in all 6
 - No prophylactic antibiotics
 - No deaths after 1990

Atkins et al, J Clin Oncol, 1999
High-dose IL-2 induces durable objective clinical responses in 15-20%
Case Example of Melanoma Patient Treated With High-Dose IL-2

Provided by D Schwartzentruber MD.
Case Study: 8 year old girl with melanoma spread to the liver

Before Treatment

After Treatment

Soni et al. J Pediatr Hematol Oncol 2002
High-dose IL-2 after No Response on Biochemotherapy
High-dose IL-2 promotes durable disease free survival in responders

Klapper et al. Cancer 2008
IL-2 and radiation therapy: Abscopal effect?

66% objective response rate

Seung et al. Sci Transl Med 2012
What correlates with response to IL-2 treatment?

- Performance status
- Development of autoimmunity
 - Autoimmune thyroiditis
 - Vitiligo
- Amount of IL-2 given during first course
- Height of the rebound lymhocytosis
- CA IX (in renal cell carcinoma)?
- Pre-treatment VEGF/fibronectin levels?

Biomarkers of IL-2 response: Proteomic analysis

A Validation set
B VEGF and Fibronectin map
C Training and Validation set

Sabatino et al. JCO 2009
VEGF predicts survival following IL-2 treatment

Survival, by VEGF group

Survival, by VEGF group

\[P = 0.0031 \]

Sabatino et al. JCO 2009
IL-15 Signaling

- Unique cytokine that complexes with receptor from cell of origin, then signals target cell

- With IL-2 and IL-7 in cytokine family promoting T cell growth and differentiation but may not expand Tregs

- Clinical trials starting

Margolin, Lazarus and Kaufman 2013
Comparing IL-2 and IL-15

IL-2
- Activated T, B express high-affinity receptor
- Prolif/differentiation of NK, T, and B cells
- Promotes activation-induced cell death
- Maintenance of Treg
- +/- KO develops autoimmunity

IL-15
- Produced by DC, monos
- Surface-bound on DC/mono receptors on NK, CD8a1 T cells
- Promotes proliferation NK, T, B, and memory CD8 T cells
- Inhibits AICD
- Does not support Treg
- +/- KO is lymphopenic
Interleukin-21
IL-21

- Dendritic cells
 - Antigen uptake
 - Antigen presentation
 - Maturation

- Activated CD4+ T cells
 - Proliferation
 - Tc1/Tc7 differentiation
 - Resistance to T_{reg} inhibition

- NKT cells
 - Survival
 - Proliferation
 - Granular morphology
 - Cytokine production

- B cells
 - Isotype switch
 - Immunoglobulin production
 - Plasma cell differentiation
 - Anti-CD40 mAb-induced proliferation
 - TLR-induced proliferation
 - Apoptosis

- Macrophages
 - TCXCL8/IL8 production
 - Activation

- T_{reg} cells
 - No proliferative effect.

- Cytotoxic CD8+ T cells
 - Proliferation
 - Perforin, INFγ, granzymes
 - Cytotoxicity

Nature Reviews | Drug Discovery
Phase I IL-21 clinical trial

Melanoma

Renal cell carcinoma

Thompson et al. JCO 2008
IL-4

- Pleomorphic Th2 cytokine
- Net effects depend on milieu
 - Mainly a B cell-stimulator
 - Inhibits non-specific NK activity
 - Enhances other adaptive immune functions
 - Growth factor for Th2
 - Promotes proliferation, cytotoxicity of CTL
 - Stimulates MHC class II expression
 - Contributes to DC maturation
 - Enhances mΦ tumorcidal activity
IL-4

- Promising preclinical data, especially transgenic secretion by tumor
- Clinical experience limited
 - Studied like IL-2 at MTD
 - Unfavorable therapeutic index
- Used routinely to elicit i-moDC from PBMC
 - Used \textit{ex vivo} w/GM-CSF
 - Shares some structure, function with IL-13
IL-4 and IL-13

- **Similarities**
 - Predominantly anti-inflammatory effects
 - Favor Th₂ responses
 - Partially common receptor
 - Promotes Ig class switch
 - Used w/ GM-CSF moDCs

- **Differences**
 - IL-13 activity on monocyte/mΦ cells
 - IL-13 lacks B, T cell effects
 - IL-13 receptors on tumor cells, especially glioma
 - Immunotoxins
 - Chimeric T cell Ag receptor
IL-7

Signaling/gene expression
JAK 1,3 STAT 5
PI3K mTOR activation

Regulation contrasts with IL-2, IL-15
Unique to IL-7 is receptor downregulation
IL-7 accumulates during lymphopenia due to utilization

Mediates homeostatic expansion of naïve cells during lymphopenia
May have clinical potential, possibly with IL-15, IL-21)
IL-12 Cytokine Family

Interleukin-12
- p35
- p40
- β2
- β1
- Production of T-helper 1 cells
- Interferon-γ production
- Adaptive immunity

Interleukin-23
- p19
- p40
- β1
- Induction of interferon-γ and other cytokines by memory T cells, macrophages and dendritic cells

Interleukin-27
- p28
- EBI3
- WSX-1/CCR9
- Production of T-helper 1 cells
- Interferon-γ production by naive T cells in synergy with interleukin-12
- Differentiation and proliferation of naive T cells

p35-EBI3
- ?
- Inside cell
- Unknown
IL-2 vs. IL-12 Signaling
IL-12 links innate and adaptive immune responses
IL-12

• Link between innate, adaptive immune response
 – Receptors on variety of immune cells
 – Induces IFN-γ, a prototypical type I cytokine

• Potent inducer of counterregulatory type 2 cytokines
 – Emerged in clinical trials for advanced malignancy
 – Schedules and doses may be manipulated

• Clinical potential
 – Vaccine adjuvant
 – Induction of anti-angiogenesis
 – In combinations e.g. w/ -IFN, IL-2?
GM-CSF

- Cells of origin
 - Th1, Th2
 - Others include epithelial, fibroblast, tumor
- Target cell: immature DC (& myeloid progenitor)
- Biological functions
 - Stimulation of T cell immunity via effect on APC
 - Myeloid cell proliferation, differentiation
- Clinical development
 - Hematopoietic support
 - Not a potent stand-alone cytokine in cancer
 - Adjuvant for melanoma: (-) results+/- peptide vaccine
 - Immunocytokine in prostate cancer DC product
 - Transgenic expression (GVAX) [and other cytokines]
Mechanism of GM-CSF anti-tumor activity?
Non-immune potentiating cytokines

- IL-6
- IL-10
- IL-17??
- TGF-β
- VEGF
Conclusions

• Immune-potentiating cytokines have shown clinical benefit in patients with cancer
 • IL-2
 • Interferon-α
• The mechanism of cytokine-mediated tumor regression is unclear
• Several cytokines are in clinical development
• Combination studies are in progress
 • Cytokines and immunotherapy (e.g. anti-CTLA-4, PD-1)
 • Cytokines and targeted therapy (e.g. BRAF inhibitors)
 • Cytokines and radiation (e.g. absocopal effect)
• Predictive biomarkers are in development
 • Autoimmunity
 • VEGF