Immunotherapeutic barriers at the level of the tumor microenvironment

Thomas F. Gajewski, M.D., Ph.D.

Professor, Departments of Pathology and Medicine
Program Leader, Immunology and Cancer Program of the University of Chicago Comprehensive Center
Disclosures

• Advisory boards:
 – GSK-Bio, Roche-Genentech, Merck, BMS, Abbvie
 – Co-founder: Jounce

• Research support:
 – GSK-Bio, Eisai, Roche-Genentech, BMS, Curetech, Morphotek, Incyte
CD8+ cytotoxic T lymphocyte killing an antigen-expressing tumor cell
In vivo, a tumor is more than tumor cells

- Three dimensional mass
- Extracellular matrix
- Supported by the neovasculature, fibroblasts, macrophages
- Variable presence of inflammatory cells
 - T cells (and subsets thereof)
 - B cells/plasma cells
 - NK/NKT cells
 - Dendritic cell subsets
- The functional phenotypes of these cells may or may not be permissive for an effective anti-tumor immune response (either priming phase or effector phase)
- Also, likely need for dynamic interaction with draining lymph node compartment for optimal anti-tumor immunity ➔ added complexity
Complexity of stromal elements in solid tumors

DeMorrow et al. 2011
Anti-tumor immune responses in vivo: Taking into account the tumor microenvironment

Lymph node (Priming phase)

Vaccine

Endogenous

Lymphatic

Blood

Adoptive T cell transfer

Tumor microenvironment (Effector phase)

Inhibitory mechanisms

Granzymes, perforin

Chemokines

IFN-γ
Features of subsets of solid tumors that might mediate poor immune recognition or lack of immune destruction

• Priming phase
 – Lack of innate immune-activating “danger” signals
 – Poor recruitment of the critical APC subsets for cross-presentation of antigens to T cells
 – Inadequate expression of costimulatory ligands on tumor cells or on infiltrating APCs

• Effector phase
 – Inadequate recruitment of activated effector T cells
 • Vascular endothelial cells/homing receptors
 • Chemokines
 – Presence of dominant immune inhibitory mechanisms that suppress T cell effector functions
 • Inhibitory receptors (e.g. PD-L1/PD-1)
 • Extrinsic suppressive cells (e.g. Tregs, MDSCs)
 • Metabolic inhibitors (e.g. IDO, arginase)
 • Inhibitory cytokines (e.g. IL-10, TGF-β)
Expression of a subset of chemokine genes is associated with presence of CD8+ T cells in melanoma metastases.

Patients with clinical benefit from immunotherapies

Chemokine/T cell gene expression signature is associated with survival following GSK MAGE3 protein vaccine.

Louahed et al., EORTC-NCI-AACR 2009
Ipilimumab clinical responders also show a chemokine/T cell gene expression profile in tumor microenvironment

<table>
<thead>
<tr>
<th></th>
<th>No-benefit</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>CXCL9, 10, 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL4, CCL5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Granzyme B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perforin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CD8α</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ji et al, Cancer Immunol. Immunoth. 2012
Implication of melanoma gene array results for patient-specific therapy

- Gene expression profiling of the melanoma tumor microenvironment has revealed reproducible patterns associated with clinical benefit should be explored as predictive biomarker in prospective trials
 - Already being pursued by GSK-Bio in context of multicenter MAGE3 vaccine studies
- Ideally, this strategy should allow enrichment for the potentially responsive patient population in the future
 - Think Her2 equivalent for T cell immunotherapies
- These observations also highlight critical aspects of tumor/immune system biology, and suggest specific strategies for overcoming immunologic barriers at the level of the tumor microenvironment
Two broad categories of tumor microenvironments defined by gene expression profiling and confirmatory assays

CD8 IHC

What dictates recruitment of activated CD8$^+$ T cells?

Why are tumors that contain activated CD8$^+$ T cells not rejected spontaneously?

What are the innate immune mechanisms that promote T cell priming in a subset of patients?

Gajewski, Brichard; Cancer J. 2010
1. Chemokines, vascular endothelium, and T cell migration into tumor sites

What is attracting T cells into some tumors? Can we mimic this in the tumors that fail to achieve it spontaneously?
A subset of melanoma cell lines expresses a broad array of chemokines

- Implies that in some cases, the melanoma tumor cells themselves can produce a broad panel of key chemokines for T cell migration

<table>
<thead>
<tr>
<th>SKMel23</th>
<th>M888</th>
<th>M537</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gro-α</td>
<td>IL-8</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3 4 5</td>
</tr>
<tr>
<td>6 7 8 9</td>
<td></td>
<td>10 11</td>
</tr>
</tbody>
</table>

- CCL2
- CCL4
- CCL5
- CXCL9
- CXCL10
Superior recruitment of human CD8$^+$ effector T cells in NOD/scid mice bearing “chemokine-high” M537 melanomas

Features of vascular endothelial cells also regulate T cell homing: ET$_B$R

Candidate strategies to promote effector T cell migration into tumor sites

• Introduce chemokines directly
 – CXCR3-binding chemokines (CXCL9, CXCL10)
 – Others (CCL2, CCL3, CCL4, CCL5)

• Induce chemokine production from stromal cells
 – LIGHT, lymphotoxin: bind LTβR

• Elicit appropriate local inflammation that includes chemokine production
 – Type I IFNs
 – TLR agonists
 – Radiation

• Alter signaling pathways in melanoma cells themselves to enable chemokine gene expression by tumor cells
Intratumoral LIGHT adenovirus in B16 melanoma: Promotes chemokine production, CD8+ T cell recruitment, primary tumor control, and rejection of non-injected distant metastases

Yu et al, J. Immunol. 2007
2. T cell suppressive mechanisms

Why are TIL not eliminating the tumor cells they are infiltrating? Can we overcome this defect and restore tumor rejection?
Inflamed melanomas containing CD8+ T cells have highest expression of immune inhibitory pathways

- **IDO** (indoleamine-2,3-dioxygenase)
 - Tryptophan depletion
- **PD-L1**
 - Engages PD-1 on T cells
- **CD4+CD25+FoxP3+ Tregs**
 - Extrinsic suppression
- **T cell anergy** (B7-poor)
 - T cell intrinsic TCR signaling defect

Presence of Tregs and expression of PD-L1 and IDO are associated with a CD8⁺ T cell infiltrate

Patient 1 Patient 2

CD8

FoxP3

PD-L1

IDO

CD8 vs PD-L1

CD8 vs IDO

Patient 1 Patient 2

CD8 FoxP3 PD-L1 IDO

R² = 0.7293
Strategies to block immune inhibitory mechanisms validated in mouse models and being translated to the clinic

- **Blockade of PD-L1/PD-1 interactions**
 - Anti-PD-1 and anti-PD-L1 mAbs (BMS, Merck, Genentech, Curetech)

- **IDO inhibition**
 - Potent IDO small molecule inhibitors (Incyte)

- **Depletion of CD4⁺CD25⁺FoxP3⁺ Tregs**
 - Denileukin diftitox (IL-2/DT fusion)
 - Daclizumab, Basiliximab (anti-IL-2R mAbs)
 - Ex vivo bead depletion of CD25⁺ cells from T cell product for adoptive transfer

- **Anergy reversal**
 - Introduction of B7-1 into tumor sites
 - Homeostatic cytokine-driven proliferation
 - T cell adoptive transfer into lymphopenic recipient
 - Exogenous IL-7 (Future: IL-15, IL-21)

- **Combinations of negative regulatory pathway blockade**
 - Synergy between blockade of 2 or more pathways
Clinical activity of anti-PD-1 mAb in metastatic melanoma

27% RR among 95 melanoma patients

Topalian et al. NEJM. 2012
Reduction of Treg number using Denileukin diftitox can have clinical activity in melanoma

Rasku et al

Multicenter phase II study currently ongoing
Dose-dependent inhibition of IDO activity as assessed by kynurenine/tryptophan ratios in treated patients

Study INCB24360-101

Kyn/Trp Ratios

Average percentage change from baseline in Kyn/Trp ratios at Day 15

Newton et al. ASCO 2012
Combinatorial blockade of selected inhibitory pathways is therapeutically synergistic in vivo

Anti-CTLA-4 + anti-PD-L1
Anti-CTLA-4 + IDOi
Anti-PD-L1 + IDOi
2b. Solid tumor stroma as a barrier

How do stromal components that support tumor growth interface with host immune response?
Targeting tumor stroma immunologically may be the key to durable complete responses

Anti-CD40 mAb promotes tumor shrinkage by altering intratumoral macrophages in pancreatic cancer

Beatty, Vonderheide et al. Science 2011
3. Innate immune sensing of tumor—type I IFNs

How are anti-tumor T cells sometimes becoming spontaneously primed? Can we improve endogenous T cell priming in the tumors that fail to do so alone?
Melanoma metastases that contain T cell transcripts also contain transcripts known to be induced by type I IFNs
Innate immune sensing of tumors drives host type I IFN production and cross-priming of CD8+ T cells via CD8α DCs.
Provision of exogenous IFN-\(\beta\) intratumorally can potently induce tumor rejection

Should we develop strategies for intratumoral administration of IFN-\(\alpha/\beta\), to modify the tumor microenvironment?
Conclusions

• There is heterogeneity in patient outcome to immune-based therapies for cancer such as melanoma vaccines, IL-2, and anti-CTLA-4 mAb
• One component of that heterogeneity is derived from differences at the level of the tumor microenvironment
• Key determining factors in melanoma microenvironment include chemokine-mediated recruitment of effector CD8+ T cells, local immune suppressive mechanisms, and innate immune activation including type I IFNs
• Understanding these aspects is enabling improved patient selection for Rx with immunotherapies (predictive biomarker), and also development of new interventions to modify the microenvironment to better support T cell-mediated rejection
• Targeting the tumor stroma immunologically may be just as critical as targeting the tumor cells
Acknowledgments

Melanoma gene array/chemokines
Helena Harlin
Ruth Meng
Amy Peterson
Mark McKee
Craig Slingluff
Functional genomics core

LIGHT adenovirus
Yang-Xin Fu
Ping Yu
Hans Schreiber

Uncoupling negative regulation
Stefani Spranger
Justin Kline
Robbert Spaapen
Yuan-yuan Zha
Christian Blank
Amy Peterson
Ian Brown

Type I IFNs
Mercedes Fuertes
Seng-Ryong Woo
Robbert Spaapen
Aalok Kacha
Justin Kline
David Kranz
Hans Schreiber
Ken Murphy

Collaborative vaccine/gene array data
Gerold Schuler (Erlangen group)
Vincent Brichard (GSK-Bio)