Immunotherapy/Immunotherapy combinations

Thomas F. Gajewski
Jon Wigginton
Lieping Chen
Glenn Dranoff
Rationale and foundation for discussion

• Important disclaimer: we are not suggesting that “vaccines don’t work” and therefore combinations of vaccines plus other therapies will automatically be required.
• Rather, our view is that an anti-tumor immune response is a complex and multi-stage process that can become dysregulated at several levels in the context of a growing tumor.
• Overcoming each of these defects may require a distinct intervention, and therefore combination therapies may be important in order to translate immune responses into tumor regression.
• Another way to look at it: with T cell-based immunotherapy, the “drug” is not necessarily the product administered (e.g. vaccine)—rather, the therapeutic entity is the properly generated tumor antigen-specific effector T cell population that has penetrated the tumor microenvironment and maintained effector function there.
At what levels can a spontaneous anti-tumor T cell response fail?

Lymph node

1. **innate immune awareness**
2. **Antigens/Ag processing innate immune awareness**
3. **APC maturation/costimulation**
4. **T cell repertoire/activation**
5. **T cell differentiation/expansion/persistence**

Blood

6. **Effector T cell trafficking**
7. **T cell effector function (negative regulation)**

Tumor microenvironment

2. **Antigens/Ag processing innate immune awareness**
3. **APC maturation/costimulation**
4. **T cell repertoire/activation**
5. **T cell differentiation/expansion/persistence**
6. **Effector T cell trafficking**
7. **T cell effector function (negative regulation)**
8. **Target cell apoptosis**
Hypothetical barriers point towards strategies for intervention

Vaccines
1. Innate immune awareness/Ag presentation/APC maturation
 - Are there “danger” signals to ensure productive antigen display?
2. T cell repertoire/initial activation
 - Repertoire may be restricted or of low avidity
 - Immune suppression may carry over to DLN compartment

Adoptive Tx
3. T cell differentiation/expansion/persistence
 - Proper T cell phenotype might not be induced (Th1/CTL/memory)
 - Magnitude or duration of T cell response may be inadequate
4. T cell trafficking into tumor sites
 - Lack of proper chemokine receptors on T cells, or chemokines at tumor site
 - Signals for penetrating extracellular matrix?
5. Executing effector function in tumor microenvironment
 - Dominant negative regulatory pathways
 - Poor maintenance of effector function (e.g. regeneration of cytotoxic granules)
6. Tumor cell susceptibility to recognition and killing
 - Loss of antigens, processing machinery, MHC
 - Anti-apoptotic mechanisms: tumor cells can be resistant
 - Interface with tumor cell-intrinsic biology: oncogenic pathways orchestrating resistance
Candidate approaches to overcome these barriers

1. Innate immune awareness/Ag presentation/APC maturation
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. T cell differentiation/expansion/persistence
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Candidate approaches to overcome these barriers

1. Innate immune awareness/Ag presentation/APC maturation
 – Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 – B7 and other costimulatory ligands
 – Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. T cell differentiation/expansion/persistence
 – Differentiation cytokines (IL-12, IL-18)
 – Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 – Intratumoral chemokines, LIGHT
 – Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 – Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 – Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 – Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 – Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Example 1: α-GalCer

Administration of protein and α-GalCer can synergistically expand CD8⁺ T cells

Candidate approaches to overcome these barriers

1. Innate immune awareness/Ag presentation/APC maturation
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. T cell differentiation/expansion/persistence
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Example 2: CTLA-4
Anti-CTLA-4 mAb + GM-CSF-transduced B16 vaccine induces tumor rejection and leads to vitiligo

van Elsas, Allison et al. JEM 1999
GVAX Immunotherapy (CG1940/CG8711) + Ipilimumab (MDX-010: anti-CTLA-4) for HRPC

VUmc Cancer Center Amsterdam
GVAX + anti-CTLA-4 in prostate cancer: PSA curves – Dose Level 3 (3 mg/kg)

a: 13Mar06: SAE - Hypophysitis (7 mo)
b: 03Feb06: Hypophysitis (5 mo)
c: 09Feb06: SAE – Hypophysitis (5 mo)

Gerritsen et al. ASCO 2006
Candidate approaches to overcome these barriers

1. **Innate immune awareness/Ag presentation/APC maturation**
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. **T cell repertoire/initial activation**
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. **T cell differentiation/expansion/persistence**
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. **T cell trafficking into tumor sites**
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. **Executing effector function in tumor microenvironment**
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. **Tumor cell susceptibility to recognition and killing**
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Example 3A: IL-12
Superior induction of specific CTL responses in mice using peptide-loaded APCs + IL-12

Fallarino et al. Int. J. Cancer 1999
Potent T cell response against multiple antigens post-immunization of melanoma patients with peptide-pulsed PBMC + IL-12

Direct ex vivo IFN-γ ELISPOT

3 patients with CR post-vaccination
Superior immune responses with IL-12 + peptides in Montanide in patients with melanoma

Lee, Weber et al. JCO 2001
Example 3B: Anti-4-1BB
Co-administration of anti-4-1BB mAb with adoptively transferred T cells induces superior tumor rejection and T cell survival in mice

Example 3C: Homeostatic proliferation

Anergic 2C T cells reject tumors after homeostatic proliferation in RAG2^{-/-} hosts

Brown et al., J. Immunol., 2006
Candidate approaches to overcome these barriers

1. Innate immune awareness/Ag presentation/APC maturation
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. T cell differentiation/expansion/persistence
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
T cell transcripts in melanoma metastases are associated with expression of specific chemokine genes

Cell Lines

CCL5/RANTES

TCR-α

Expression Units

Sample Number

Expression Units

Sample Number

Cell Lines
Example 4: Intratumoral LIGHT adenovirus in B16 melanoma promotes greater recruitment of CD8$^+$ T cells in primary tumor and leads to rejection of non-injected distant metastases

Yu et al, J. Immunol. 2007
Candidate approaches to overcome these barriers

1. Innate immune awareness/Ag presentation/APC maturation
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. T cell differentiation/expansion/persistence
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Example 5A: PD-1⁻/⁻ 2C TCR Tg T cells are superior at tumor rejection in vivo

Blank et al, Cancer Research, 2004
Example 5B: 1-methyltryptophan reverses immunosuppression by IDO and improves tumor control in vivo

Example 5C: CD25\(^+\) Tregs

CD25 depletion can partially control B16 melanoma growth in vivo

Jones, Gallimore et al. Cancer Immunity 2002
Candidate approaches to overcome these barriers

1. Innate immune awareness/Ag presentation/ APC maturation
 - Innate immune cells and cytokines, TLR agonists, CD40 ligands, vaccination—novel Ag sources

2. T cell repertoire/initial activation
 - B7 and other costimulatory ligands
 - Interference with lymph node-based or systemic negative regulators (CTLA4, IDO, arginase, anergy, Tregs)

3. T cell differentiation/expansion/persistence
 - Differentiation cytokines (IL-12, IL-18)
 - Expansion, survival factors (IL-2, IL-7, IL-15, anti-41BB; homeostatic proliferation)

4. T cell trafficking into tumor sites
 - Intratumoral chemokines, LIGHT
 - Pro-inflammatory treatments (XRT, TLR agonists, innate cytokines)

5. Executing effector function in tumor microenvironment
 - Blockade of tumor microenvironment-based negative regulators (IDO, PD-1/PD-L1, Tregs, anergy, TGF-β, IL-10, iNOS)
 - Promote effector cell proliferation (regenerate cytotoxic granules)

6. Tumor cell susceptibility to recognition and killing
 - Blockade of key anti-apoptotic molecules (Bcl2 and Spi inhibitors)
 - Inhibit oncogenic pathways that create resistant phenotype and/or resistant microenvironment (Stat3; MEK? Notch? Wnt?)
Example 6: PI-9/Spi6
Serine protease inhibitor PI-9 is frequently expressed in human cancers

Introduction of the murine equivalent Spi6 into tumor cells decreases susceptibility to T cell-mediated lysis in vitro
Multiple combinations:
Another layer of complexity and excitement through combined manipulation of regulatory checkpoints

- 1-MT + lymphodepletion
- Anergy reversal + Treg-depletion
- Anti-4-1BB + anti-CTLA-4
- Anti-4-1BB + anti-PD-L1
- Anti-CTLA-4 + Treg depletion
- TLR agonist + Treg-depletion
1-MT + lymphodepleting chemotherapy: Partial control of B16 melanoma

Hou, Munn et al. Cancer Res. 2007
Treg depletion + anergy reversal CD25-depleted T cells transferred into lymphopenic hosts gives long-lived rejection of B16 melanoma and vitiligo

Kline et al. Submitted.
Anti-4-1BB + anti-PD-L1
Combination induces rejection of PD-L1-expressing tumors in vivo

Hirano, Chen et al. Cancer Res. 2005
Vaccine + CpG + Treg depletion: Control of mammary tumors in Neu Tg mice

Nava-Parada, Celis et al. Cancer Res. 2007
Additional issues

- Tumor heterogeneity
 - Different cancer types may have distinct dominant immunologic barriers
 - Different patients with the same cancer may have distinct dominant immunologic barriers

- Opportunities for drug discovery and development
 - Cellular targets (e.g., Tregs, MSCs, tumor vasculature)
 - Molecular targets (FoxP3, LAG-3, GITR, IDO, arginase, PD-1, LIGHT, T cell signaling)

- How to prioritize combinations?
 - Many permutations => Ideally, should be based on sound mechanistic analysis of immunologic barriers in populations of patients with given cancer types
 - Preclinical models should show synergy

- Patient selection
 - Can we identify patients who have measurable expandable tumor antigen-specific precursors before enrolling on vaccine trials?
 - Similarly, can we identify patients with tumor microenvironment that can support effector phase of anti-tumor immune response before enrolling on immunotherapy trials?

Represents only 7 genes:
- 4 upregulated
- 3 downregulated

6 mos SD or better
Conclusions

• Spontaneous anti-tumor T cell responses may fail at one of several levels
• Specific mechanisms of failure have identified new targets and strategies for intervention
• There is a strong scientific basis for combination therapies with the aim of overcoming specific barriers and immunologic checkpoints to increase the therapeutic efficacy of T cell-based immunotherapy of cancer
• Some agents are becoming available for clinical translation, but others need broad-based community support to be made available for clinical studies based on a sound rationale and preclinical data
Agents prioritized by scientific community for clinical development

Table 1. Final Rankings of Agents with High Potential for Use in Treating Cancer

<table>
<thead>
<tr>
<th>Rank</th>
<th>Agent</th>
<th>Agent Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IL-15</td>
<td>T-Cell Growth Factor</td>
</tr>
<tr>
<td>2</td>
<td>Anti-Programmed Death-1 (PD1) and/or Anti-B7-H1 (PD1 Ligand)</td>
<td>**T-Cell Checkpoint Blockade Inhibitor</td>
</tr>
<tr>
<td>3</td>
<td>IL-12</td>
<td>Vaccine Adjuvant</td>
</tr>
<tr>
<td>4</td>
<td>Anti-CD40 and/or CD40L</td>
<td>Antigen Presenting Cell Stimulator</td>
</tr>
<tr>
<td>5</td>
<td>IL-7</td>
<td>T-Cell Growth Factor</td>
</tr>
<tr>
<td>6</td>
<td>CpG</td>
<td>Vaccine Adjuvant</td>
</tr>
<tr>
<td>7</td>
<td>1-Methyl Tryptophan</td>
<td>Enzyme Inhibitor</td>
</tr>
<tr>
<td>8</td>
<td>Anti-CD137 (anti-41BB)</td>
<td>T-Cell Stimulator</td>
</tr>
<tr>
<td>9</td>
<td>Anti-TGF-beta</td>
<td>Signaling Inhibitor</td>
</tr>
<tr>
<td>10</td>
<td>Anti-IL-10 Receptor or Anti-IL-10</td>
<td>Suppression Inhibitor</td>
</tr>
<tr>
<td>11</td>
<td>Flt3L</td>
<td>Dendritic Cell Growth Factor/Vaccine Adjuvant</td>
</tr>
<tr>
<td>12</td>
<td>Anti-Glucocorticoid-Induced TNF Receptor (GITR)</td>
<td>T-cell Stimulator</td>
</tr>
<tr>
<td>13</td>
<td>CCL21 Adenovirus</td>
<td>T-Cell Attracting Chemokine</td>
</tr>
<tr>
<td>14</td>
<td>Monophosphoryl Lipid A (MPL)</td>
<td>Vaccine Adjuvant</td>
</tr>
<tr>
<td>15</td>
<td>Poly IC and/or Poly ICLC</td>
<td>Vaccine Adjuvant</td>
</tr>
<tr>
<td>16</td>
<td>Anti-OX40</td>
<td>T-Cell Stimulator</td>
</tr>
<tr>
<td>17</td>
<td>Anti-B7-H4</td>
<td>T-Cell Checkpoint Blockade Inhibitor</td>
</tr>
<tr>
<td>18</td>
<td>Resiquimod and/or 852A</td>
<td>Vaccine Adjuvant</td>
</tr>
<tr>
<td>19</td>
<td>LIGHT and/or LIGHT vector</td>
<td>T-Cell Stimulator</td>
</tr>
<tr>
<td>20</td>
<td>Anti-Lymphocyte Activation Gene-3 (LAG-3)</td>
<td>T-Cell Checkpoint Blockade Inhibitor</td>
</tr>
</tbody>
</table>
Clinical development of anti-CTLA-4 mAb: Example of MDX-010 (Ipilimumab)

- Fully human IgG1 monoclonal antibody to human CTLA-4 created by Medarex
- Blocks binding of CTLA-4 to CD80 and CD86
- Augments immune responses in primate models
- Co-developed by Medarex and Bristol-Myers Squibb in multiple cancer indications
 - Phase III study in metastatic melanoma ongoing
 - Phase II studies in renal cell carcinoma, prostate cancer, ovarian cancer, and others
GVAX/anti-CTLA4 trial Contributors

Dept Medical Oncology
Tanja de Gruijl
Sinéad Lougheed
Helen Gall
Bob Pinedo
Beppe Giaccone
Winald Gerritsen
Fons van den Eertwegh

Dept Pathology
Saskia Santegoets
Anita Stam
Petra Scholten
Erik Hooijberg
Mary von Blomberg
Rik Scheper

CELL GENESYS
Natalie Sacks
Kristen Hege
Shirley Clift
Karin Jooss
David Rhodes
Sayeh Morali

KWF KANKER BESTRIJDING
Israel Lowy
Steven Fischkoff
Elizabeth Levy

Prostate Cancer Foundation

MEDAREX
Affymetrix gene array analysis of pre-treatment biopsies from patients on melanoma vaccine sorted by clinical outcome

Represents only 7 genes:
- 4 upregulated
- 3 downregulated

6 mos SD or better

Has implications for patient selection on vaccine trials, and understanding biology
Differential chemokine expression in melanoma metastases with high versus low T cell transcripts
Co-expression of IDO, PD-L1, and FoxP3 transcripts in individual tumors
Summary of tumor microenvironment barriers:
Need to promote T cell trafficking and overcome local immunosuppression.
Resolution of cutaneous metastases following immunization with melanoma peptide-pulsed PBMC + rhIL-12

After 3 vaccines

After 9 vaccines

Peterson, Gajewski et al. JCO 2003.
Greater increase in Melan-A-specific CD8$^+$ T cells in clinical responders

2 CR, 1 MR, 4 mixed responses
Complexities of anti-tumor immune responses: Taking into account the effector phase

Vaccine

Lymph node (Priming phase)
- APC
- nCD8
- IL-2
- eCD8

Blood

Tumor microenvironment (Effector phase)
- APC
- Chemokines
- IFN-γ
- eCD8
- Granzymes perforin

Inhibitory mechanisms
I. Priming phase/vaccine: considerations for combinations

- Antigen choice(s)
 - Peptides, protein, DNA, RNA, bulk tumor cells
 - Type of antigen (e.g. necessary for malignant phenotype)
 - Class I MHC, class II MHC, non-classical (glycolipids)

- Adjuvant components
 - Emulsions in oil-based formulations
 - TLR agonists (LPS/MPL + CpG)
 - Cytokine additions—differentiation promoters
 - Microbial vectors
 - Dendritic cell-oriented

- Dose, schedule, route of administration
 - Issue of tissue-specific homing of T cells
IV. Negative regulatory pathways: considerations for combinations

- Inhibitory receptors on T cells
 - CTLA-4
 - PD-1
 - KIRs

- Inhibitory cytokines
 - TGF-β
 - IL-10

- Inhibitory cell populations
 - CD4+CD25+FoxP3+ Tregs
 - Other Tregs
 - Myeloid suppressor cells
 - B cells

- Metabolic regulation
 - IDO
 - Arginase
 - Nutrient deprivation (glucose)
V. Tumor cell susceptibility: considerations for combinations

- Expression of “signal 1”
 - Antigens
 - Antigen processing machinery
 - MHC, β2M
- Overcoming anti-apoptotic mechanisms
 - Survivin
 - Bcl2-family members
 - Serine protease inhibitors
- Interface with tumor cell-intrinsic oncogenes
 - Ras/MAP kinase pathway & DC activation
 - Stat3 pathway and chemokines
 - Notch pathway and survival, immune gene expression
III. T cell trafficking: considerations for combinations

- Intratumoral chemokines
 - Mig, IP-10, MIP-1α
 - CCL21
 - (Blockade of TARC/MDC?)
- Intratumoral LIGHT
 - Promotes secondary generation of chemokines
- Homing receptors/adhesion molecules
 - Intratumoral ICAM-1 (component of TRICOM)
 - Immunizing via optimal route (tissue specific homing)
- Angiogenesis targeting
II. T cell expansion and persistence: considerations for combinations

- Survival/homeostatic cytokines
 - IL-7
 - IL-15
 - IL-21

- Costimulatory receptors
 - B7 family members
 - 4-1BB
 - Other TNFR family members
Example 4: LIGHT

Intratumoral LIGHT can induce T cell recruitment and tumor rejection in multiple tumor models

Fu et al, submitted
Only a subset of melanoma metastases appear to have the appropriate signature for T cell recruitment.