Treatment of established tumors with peritumoral injections of CD40 ligand (CD40L), CpG, poly(I:C), and extracellular ATP in murine models

Richard S. Kornbluth, M.D., Ph.D.

Disclosure: Richard Kornbluth is the inventor on patents for multimeric TNFSF ligands and immunostimulatory combinations that have been assigned to the University of California San Diego
The TNF Superfamily of Ligands
Multimeric soluble TNFSF ligands

Rationale: Single trimer forms of most TNFSF ligands are not strongly stimulatory

Solution: Produce multimeric (=many trimer forms) of TNFSF ligands

Method: Fuse the extracellular domain (ECD) of TNFSFs with a multimerization scaffold from a collectin or C1q superfamily protein

Kee et al (Kornbluth) in preparation

Example: SP-D-CD40L – body of pulmonary surfactant protein D with the ECD of CD40L
CD40L-SPD, a fusion protein of the extracellular domain of CD40L and the body of surfactant protein D

K. Kee and R.S. Kornbluth, in preparation
Immunologically relevant TNFSF Ligands

- CD40 Ligand (CD154)
- GITR Ligand
- LIGHT
- TRAIL
- RANK Ligand
- 4-1BB Ligand
- CD27 Ligand (CD70)
- OX40 Ligand
- BAFF

included in this presentation
CD40 Ligand

- Produced by activated CD4+ T cells
- Activates dendritic cells and other APCs
- Required to establish memory CD8+ cells
- Agonistic anti-CD40 antibody can cause tumor regression
- Concerns with agonistic anti-CD40
 - Toxicity
 - Immunogenity
CD40 stimulation of Dendritic Cells

- Activates DCs to express CD80 and CD86 for Signal 2
- Activates DCs synergizes with TLR stimulation to produce IL-12 p70 for Signal 3
- Activates DCs to express GITRL which acts on GITR to shut off CD4+CD25+ regulatory T cells ("Tregs")
- Requires clustering of CD40
HIV DNA Vaccine Methods

- BALB/c mice (4 or 5 mice per group)
- Inject 50 μl i.m. in each quadricep muscle
- 80μg antigen plasmid, pScGag (secreted codon-optimized Gag plasmid)
- 20μg adjuvant plasmid
- Single immunodominant peptide AMQMLKETI used for pScGag CTL and IFN-γ ELISPOT assay
pSP-D-CD40L but not membrane CD40L enhances Gag CTL activity

p < 0.01
Fresh splenocytes were plated directly into ELISPOT wells (10⁶ cells/well) and stimulated with P815 cells pulsed with a single peptide epitope.
pSP-D-CD40L does not act systemically

- Mice appear healthy and have normal weight
- No evidence of splenomegaly or lymphadenopathy
- Muscle and lung histology normal
- No antibody to SP-D-CD40L detectable
- pSP-D-CD40L must be mixed with the antigen plasmid to be active (contralateral injections of pSP-D-CD40L and antigen don’t vaccinate)
- Repeat vaccinations with pSP-D-CD40L and a different antigen plasmid are effective
Immunostimulatory Combinations for Tumor Immunotherapy
Three Routes to DC Activation

• **CD40 stimulation:** needed for generating long-term memory CD8+ T cells

• **TLR pathways:** MyD88 and TRIF pathways synergize with CD40 to stimulate DCs to produce massive amounts of IL-12 p70 (300 ng/ml)

• **Inflammasome pathways:** Contain pyrin, NACHT, or LRR domains. Activated by microbial products to stimulate IL-1β release
Models of Established Tumors

- **A20 lymphoma** is CD40^{high} and Treg-rich
- **B16F10 melanoma** is CD40^{lo} and not strongly affected by Treg depletion

- 5 mice per group
- 1 x 10^{5} tumor cells injected s.c.
- When tumor >4mm (4-6 days later) begin injections
- 50 \mu g plasmid DNA injected peritumorally every other day x 5
Cure of A20 lymphoma by peritumoral injection of either CD40L or GITRL

Cure of local tumors by day 50

Plasmid injections:
- 1/5 PBS
- 0/4 pMemCD40L
- 4/5 pSP-D-CD40L
- 4/5 pSP-D-GITRL
Survival benefits of CD40L or GITRL peritumoral injections

Percent survival vs. Day

- PBS
- pMem-CD40L
- pSP-D-CD40L
- pSP-D-GITRL
Treatment of B16-F10 melanoma requires combinations of CD40L + TLR agonists CpG and Poly(I:C) + inflammasome agonist ATPe
Synergy between CD40 activation and TLR agonists

 - enhanced DC activation to generate anti-melanoma CD8+ T cells in vitro

 - enhanced generation of anti-OVA CD8+ T cells in vivo

 - enhanced production of IL-12p70 and Th1 CD4+ T cells by human DCs in vitro
TLR and CD40L synergy against established B16-F10 tumors

<table>
<thead>
<tr>
<th>TLR</th>
<th>TLR Agonist</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>TLR 1/2</td>
<td>Pam3CSK4</td>
<td>-</td>
</tr>
<tr>
<td>TLR 2/6</td>
<td>FSL1</td>
<td>-</td>
</tr>
<tr>
<td>TLR 2/6</td>
<td>MALP2</td>
<td>-</td>
</tr>
<tr>
<td>TLR 3</td>
<td>Poly I:C</td>
<td>+</td>
</tr>
<tr>
<td>TLR 4</td>
<td>MPL</td>
<td>-</td>
</tr>
<tr>
<td>TLR 7/8</td>
<td>Imiquimod</td>
<td>-</td>
</tr>
<tr>
<td>TLR 9</td>
<td>CpG 1018</td>
<td>+++</td>
</tr>
</tbody>
</table>
TLR9 stimulation (CpG) synergizes with CD40L against established B16-F10 tumors
Combining Two TLR agonists with pSP-D-CD40L

![Graph showing tumor size over days with different treatments](image-url)
Combining Two TLR agonists with pSP-D-CD40L

Percent survival over days:
- CD40L + CpG + PolyIC
- CD40L + CpG
- CD40L + PolyIC
- pSPD-CD40L
- pcDNA3.1
- PBS

(p=0.0018)
Inflammasome Activation of IL-1β and IL-18
W200 B16F10 melanoma, effect of pSP-D-CD40L-NST plus CpG/poly(I:C) with or without ATPgammaS (ATPe)

Plasmid DNA injections

- PBS
- pSP-D-CD40L-NST
- PBS + CpG/pIC/ATPe
- PBS + CpG/pIC
- pcDNA3.1 + CpG/pIC/ATPe
- pSP-D-CD40L-NST + CpG/pIC
- pSP-D-CD40L-NST + CpG/pIC/ATPe

Tumor Area (width x length in mm²)

Day

0 5 10 15 20
W200 B16F10 melanoma, effect of combining ATPgammaS (ATPe) with pSP-D-CD40L-NST + CpG/poly(I:C)
Tumor Immunotherapy Conclusions

- For A20 lymphoma (Treg-rich), peritumoral injections of either GITRL or CD40L plasmids can cure established tumors

- For B16F10 melanoma (Treg-poor), peritumoral injections of GIRTL are inactive, but CD40L plasmid + CpG + poly(I:C) + ATPe can cure established tumors
Acknowledgements

Geoff Stone
Kristin Kee
Victoria Snarsky
Camila Toppin
Brian Tran

NIH R21 AI063982
Universitywide AIDS Research Program
UCSD CFAR AI36214
Mesothelioma Applied Research Foundation (MARF)
AIDS Training Grant AI007384
VA San Diego Healthcare System