State of the Art 3: Immunotherapy and Modulators of Apoptosis

James Finke, PhD - Cleveland Clinic, Immunology
Crystal Mackall, MD - NCI, Pediatric Oncology
James Mier, MD - BIDMC, Medical Oncology
Craig Slingluff, MD - UVA, Surgical Oncology
Introduction: define goals
[Immunotherapy and Modulators of Apoptosis]

• Why would it work?
 – Scientific rationale for combinations
• Why it may not work
 – Potential pitfalls and complications
• Data on use of combinations
 – with examples.
• Next steps to advance the described combination therapies
Why would it work?
Scientific rationale for combinations

• Apoptosis resistance is a common cause of failure of immunotherapy
• Selective destruction of tumor before immune activation
• Tumor cell apoptosis may increase antigen presentation
• Cross-reactivity of kinase inhibitors on pathways of immune function
 – Advantages of lymphodepletion
 – Selective destruction of T regs
 – Unexpected immune effects of kinase inhibitors
• Cytokine effects on tumor and on immune cells
Why it may not work.
Potential pitfalls and complications

- Pathways for induction of tumor cell death also mediate immune cell death
 - AKT/NF-KB
 - Negative effects on T cells
- Immune dysfunction after lymphodepletion
- Proteasome inhibitors: cell death, Ag proc
- Autocrine growth factors from tumor mediate escape from cell death
- Dose-related effects are complex to work out
- Complexity of cross-talk, nonspecificity
- Complexity of experimental trial designs
Data on use of combinations, with examples

Apoptosis modulation
- Protease inhibitors
- TRAIL- Caspases
- HDAC inhibitors
- NF-KB
- AKT
- MAPK/BRAF inhibition
- Cox 2 inhibition

Immune therapy
- Vaccines
- Cytokines
- Adoptive therapy
- Immune regulation
- Co-stimulation
- Antibody
- Combination immunotherapies
Data on use of combinations, with examples

• TRAIL, death receptors, and a role for IFN-gamma
 – pediatric sarcomas (Mackall)
• Effects of multikinase inhibitors on Th1/Th2 responses and T-reg cells.
 – renal cell cancer (Finke)
• Sorafenib, survivin and STAT3 – antitumor and immunologic effects
 – melanoma (Mier)
• Selective T reg depletion with low-dose kinase inhibitors
 – melanoma (Slingluff)
TRAIL, death receptors, and a role for IFN-gamma

Crystal Mackall, NCI
- **Member of the TNF superfamily** (Wiley 1995)
 - Naturally forms homotrimer and binds TR1, TR2, TR3, TR4, and OPG
- **Ligation of death domain containing receptors triggers caspase-dependent apoptosis**
- **Critical role for TRAIL in immune surveillance**
 - TRAIL knockout mice susceptible to carcinogen induced sarcomas (Cretney 2002)
 - NK Cells utilize TRAIL for killing in vivo
- **Utilized by Activated Immune Effectors**
 - B cells are capable of making TRAIL
 - CpG stimulation (Kemp, 2004)
 - Monos stimulated by group B strep or IFN (Halaas, 2004)
 - Neutrophils in urine of bladder CA patients following BCG (Ludwig, 2004)
- **TRAIL mediated GVT effect of T cells** (Schmaltz 2003)
- **TRAIL receptor agonists have been developed for clinical application**
 - Agonist mAbs and soluble synthetic TRAIL
TRAIL Kills Most Ewing’s Sarcoma Cell Lines *In Vitro*

IFNγ Reverses TRAIL Resistance *In Vitro*

Kontny, Cell Death Diff, 2001
IFNγ Modulates Several Components of the TRAIL Mediated Death Pathway

Expression of Caspase 8 via Direct Effects on the Promoter - Neuroblastoma

Yang, Cancer Res, 2003

Caspase 8
FasL
Fas
TRAIL-R3
DR3
TRAIL-R2
TRAIL-R1
TRAIL
TNFR1
TRADD

Marker
HELA
Ewings

Merchant,
Cancer Res, 2004
Ewing’s Sarcoma Xenografts Develop TRAIL Resistance in vivo

Slowing of growth of some but not all Xenografts

Even cells recovered from untreated mice became resistant

![Graph showing tumor volume over time with treatment periods](image)

![Annexin V staining](image)

Merchant, Cancer Res, 2004
TRAIL Resistance in Explants is Reversed by IFNγ Treatment

- Parent Cell Line Explant
- 0 20 40 60 80 100 % Dead
- sham TRAIL IFNγ TRAIL + IFNγ

Resection of tumor 12-16hr after last dose

25000 IU IFNγ IP Daily x5

Tissue fixed, mounted, assayed by IHC

IFNγ Treatment of Mice Induces Caspase 8 And TR Expression
TAKE HOME POINTS:
-Tumor resistance to immune mediated killing remains an issue
-IFN\(\gamma\) modulates several mediators in the caspase dependent cell death pathway
-Effective cellular immunotherapy will deposit IFN\(\gamma\) into the tumor microenvironment
-Immunotherapy would be predicted to enhance the efficacy of TRAIL receptor agonists
Effects of TKIs on Th1/Th2 Response and T-Regulatory cells.

J. Finke PhD, B.I. Rini MD, A. Richmond, R. Suppiah MD, L. Wood RN, P. Elson ScD, P. Shaheen MD, J. Garcia MD, R. Dreicer MD, R.M. Bukowski MD
Divisions of Hematology/Oncology and Immunology,
Cleveland Clinic, Cleveland, OH
Walter Storkus PhD Univ. of Pittsburgh
Th1 and Th2 Responses
(n=22)
CD4+ cells (medians)

<table>
<thead>
<tr>
<th>Day 1</th>
<th>Day 28</th>
<th>Absolute Change(^1)</th>
<th>p-Value(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>% IFN-(\gamma) cells</td>
<td>1.7%</td>
<td>9.4%</td>
<td>5.9</td>
</tr>
<tr>
<td>% IL-4 cells</td>
<td>8.6%</td>
<td>4.5%</td>
<td>-1.1</td>
</tr>
<tr>
<td>Th2 Bias</td>
<td>4.69</td>
<td>0.83</td>
<td>-4.46</td>
</tr>
</tbody>
</table>

\(^1\) Day 28 minus Day 1
\(^2\) p-values are from Wilcoxon signed rank test
Proportion of cells producing IL-4 divided by the proportion of cells producing IFN-\(\gamma\); values >0 imply a Th2 (IL-4) bias and values <0 imply a Th1 (IFN-\(\gamma\)) bias.
Treg - Medians (n=23)

<table>
<thead>
<tr>
<th></th>
<th>Day 1</th>
<th>Day 28</th>
<th>Absolute Change</th>
<th>p-Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD3+/CD4+/CD25hi+</td>
<td>3.7%</td>
<td>3.7%</td>
<td>-0.1</td>
<td>0.81</td>
</tr>
<tr>
<td>As % of PBMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% of CD3+/CD4+/CD25hi+</td>
<td>78.7%</td>
<td>48.5%</td>
<td>-22.4</td>
<td><.001</td>
</tr>
<tr>
<td>That are FoxP3+</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 Day 28 minus Day 1
2 p-values are from Wilcoxon signed rank test
FoxP3 Expression in Tregs after Sunitinib in mRCC Patients

[Graph showing FoxP3 Expression (% + in Tregs) for Patients 3, 4, 5, and 6 at Day 1 and Day 28]
Combination Therapy in Metastatic RCC

Phase I/II Trial

DC/EGF-R peptides plus anti-EGF-R mAb (IMC-255)

Sutent

Trial of Type-1 Polarized DC in Patients with mRCC.

MAGE-6, EphA2 and G250 peptides
Sutent
Sorafenib, survivin and STAT3 – antitumor and immunologic effects

James Mier - BIDMC
Sorafenib induces the nuclear translocation of AIF in A2058 Melanoma Cells

A

AIF/nuclear overlay

B

untreated

Sorafenib

PD 98059

U0126
AIF siRNA

A375 - + | A2058 - + | SK MEL5 - +

UNTREATED BAY 43-9006

- - - + + +

AIF

% Ds-Red+, AnnexinV+

UNTREATED BAY 43-9006

- - - + + + AIF siRNA
Sorafenib induces the nuclear translocation of AIF in A2058 Melanoma Cells

A

<table>
<thead>
<tr>
<th></th>
<th>A375</th>
<th>A2058</th>
<th>SK MEL 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nucleus</td>
<td>0 S P U</td>
<td>0 S P U</td>
<td>0 S P U</td>
</tr>
<tr>
<td>Mitochondria</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

AIF/nuclear overlay

untreated

Sorafenib

PD 98059

U0126
Sorafenib inhibits the activation of STAT 3

A375

<table>
<thead>
<tr>
<th></th>
<th>Untreated</th>
<th>Sorafenib</th>
<th>PD 98059</th>
<th>U0126</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSTAT3 Y705</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIME (HR) 0 1 4 24 1 4 24 1 4 24 1 4 24

A2058

<table>
<thead>
<tr>
<th></th>
<th>Untreated</th>
<th>Sorafenib</th>
<th>PD 98059</th>
<th>U0126</th>
</tr>
</thead>
<tbody>
<tr>
<td>pSTAT3 Y705</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>pERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ERK</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIME (HR) 0 1 4 24 1 4 24 1 4 24 1 4 24
Sorafenib	Stat3c
- | -
- | +
+ | +

Survivin

A2058
- Untreated: 2.4
- + Sorafenib: 79.7

A2058-STAT3C
- Untreated: 18.2
- + Sorafenib: 20.6
Selective T reg depletion with low-dose kinase inhibitors melanoma

Kerrington Molhoek
David Brautigan
Craig Slingluff
Survival and Proliferation signaling pathways in cancer and in lymphocytes
Inhibition of serum-stimulated proliferation of human melanoma cells

Synergistic inhibition of ERK phosphorylation in human melanoma cells

Combination Therapy for Melanoma – Immunologic Impact
Rapamycin (mTOR inhibition) & Sorafenib (B-Raf inhibition)

Melanoma Cells

Selective Inhibition of Regulatory T cells
Future Directions:
Combination Therapy –
low-dose sorafenib or rapamycin prior to vaccine

- Melanoma proliferation
- Regulatory T-cells
- CD8+ CD4+

Lymphopenia
Vaccinate
Immune response
Discussion

- Next steps to advance the described combination therapies
- Flexible trial designs re: timing and doses
- Rapid translation to clinical trials
- Proof of principle with small trials of specific combinations
- Monitoring biologic effect: Need for clinical trials with tumor collection
Serum-stimulated upregulation of mTOR and MAPK in melanoma cells: Phosphorylation of 4EBP1 and ERK