

Cancer Vaccine Combination with Conventional Therapies

Philip M. Arlen, M.D Center for Cancer Research National Cancer Institute, NIH

Philip M. Arlen, MD

The following relationships exist related to this presentation:

No Relationships to Disclose

STRATEGIC PLAN

Cancer Vaccine Development:

- Focus on human carcinoma
- Focus on development of vaccines that can be widely evaluated

<u>Ultimate Use:</u>

- Early in disease process/low tumor burden
- Survival as the endpoint
- Minimal toxicity

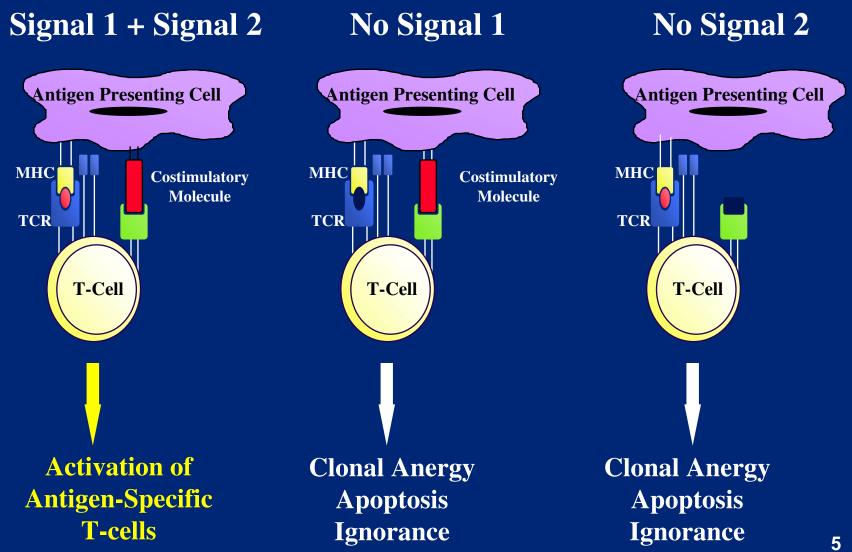
Immuno-Oncology Platform:

- <u>Combination immune therapies</u>

- **>** immune stimulation strategies
- > reduction of immune inhibitory entities
- Combination Therapies: <u>Vaccine plus</u>:
 - > conventional therapies
 - > conventional therapies in novel strategies
 - > other experimental therapies

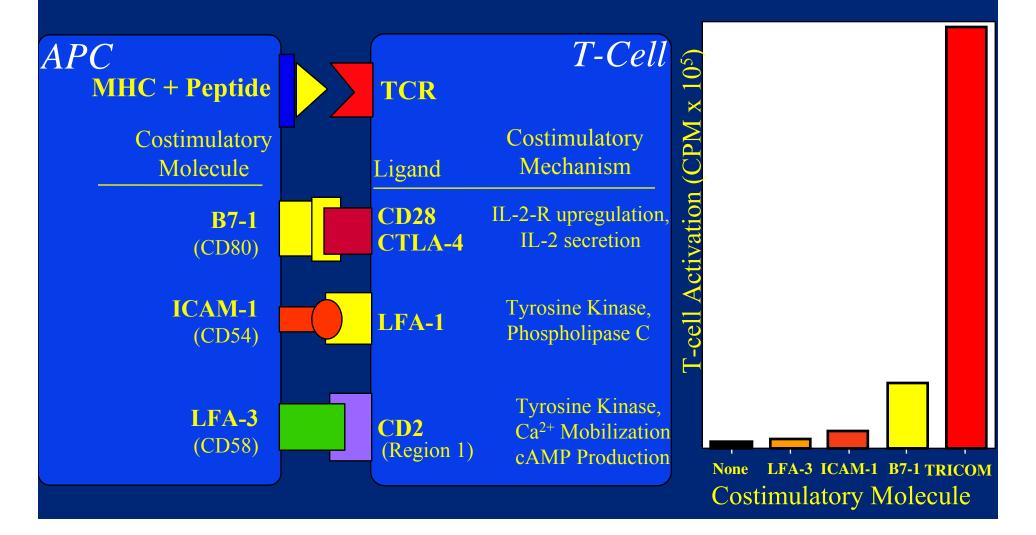
Recombinant Vaccine Vectors

• <u>Pox vectors</u>

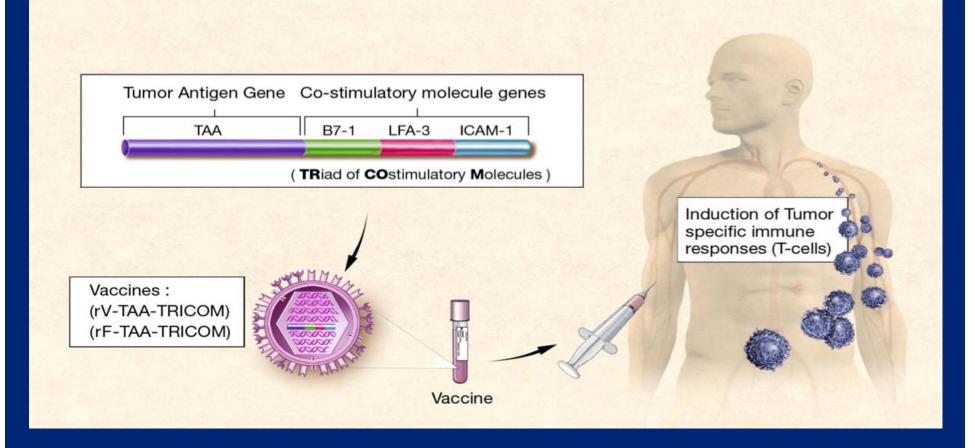

Vaccinia (rV-) elicits a strong immune response

- host induced immunity limits its continuous use
- MVA (replication defective)

Avipox (fowlpox rF-, ALVAC)


- derived from avian species
- safe; does not replicate
- can be used repeatedly with little if any host neutralizing immunity
- Can insert multiple transgenes
- Do not integrate into host DNA
- Efficiently infect antigen presenting cells including dendritic cells

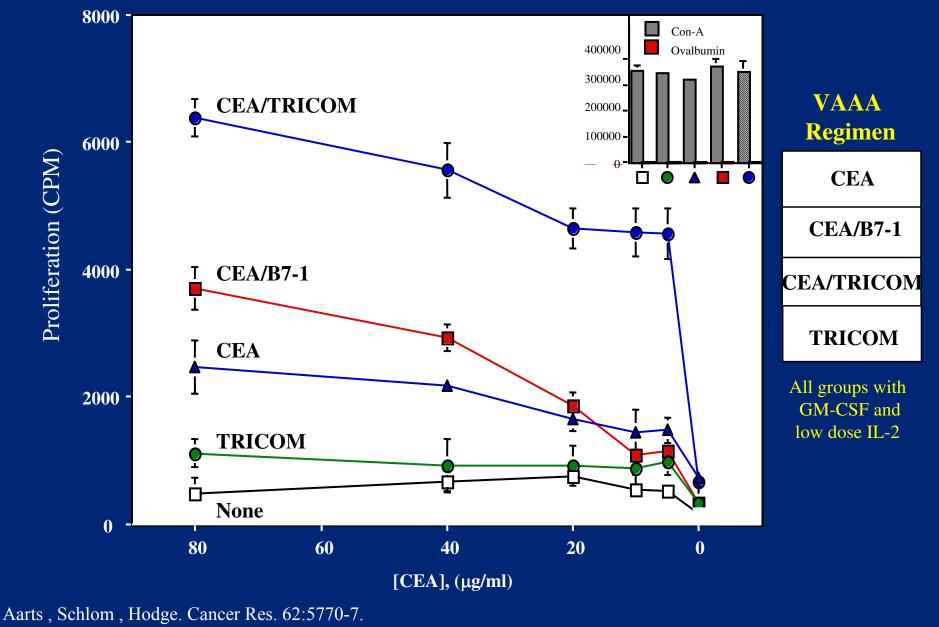
T-Cell Dependence on Costimulation



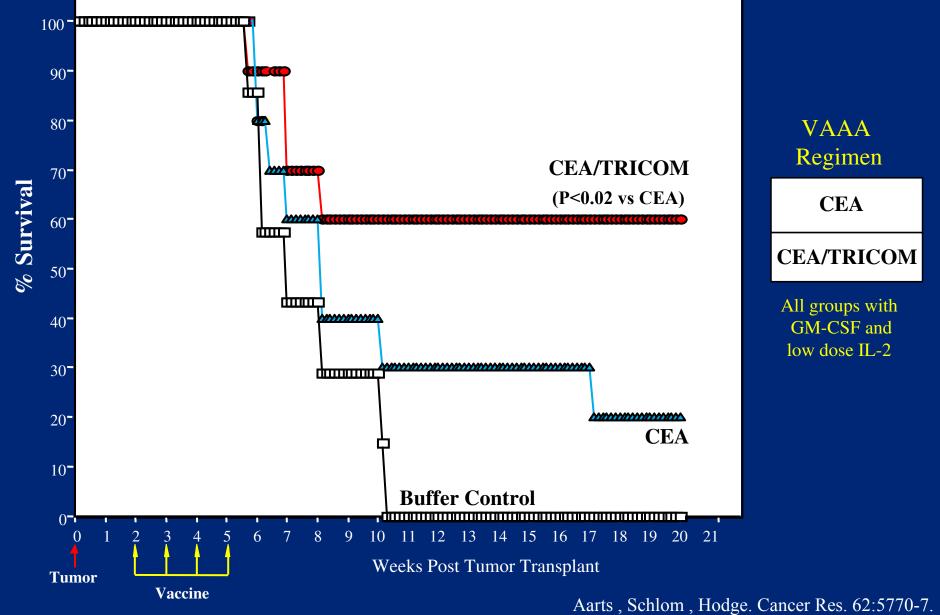
Costimulatory Molecule Candidates

Major Costimulatory Effect must be on the T-cell
No Overlap of T-cell Ligands
No Redundancy of Costimulatory Mechanisms

TRICOM Vaccines


TRICOM TRIad of COstimulatory Molecules

Costimulatory Molecule	Ligand on T cell
B7-1 (CD80)	CD28/CTLA-4
ICAM-1 (CD54)	LFA-1
LFA-3 (CD58)	CD2


TRICOM = B7-1/ICAM-1/LFA-3 CEA/TRICOM = CEA/B7-1/ICAM-1/LFA-3 CEA/MUC-1/TRICOM = CEA/MUC-1/B7-1/ICAM-1/LFA-3 (PANVAC) PSA/TRICOM = PSA/B7-1/ICAM-1/LFA-3 (PROSTVAC)

All vaccines contain: rV- as a prime vaccine avipox (fowlpox, rF-) as multiple booster vaccines CEA, MUC-1, and PSA transgenes all contain enhancer agonist epitopes

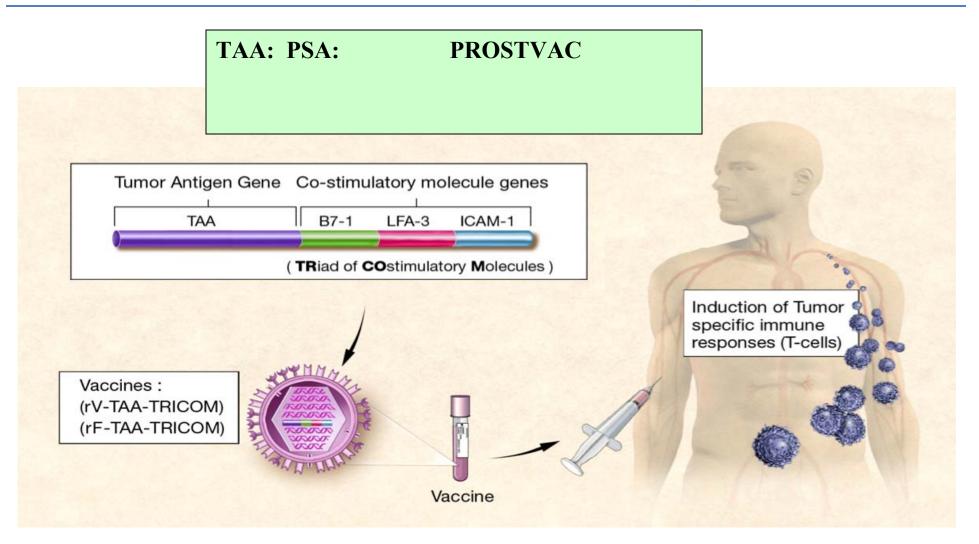
CEA-specific Lymphoproliferation of T Cells from CEA-Tg Mice Vaccinated with TRICOM Vectors

Therapy of 14-Day Established CEA⁺ Experimental Metastases in CEA-Tg Mice Using CEA/TRICOM Vectors

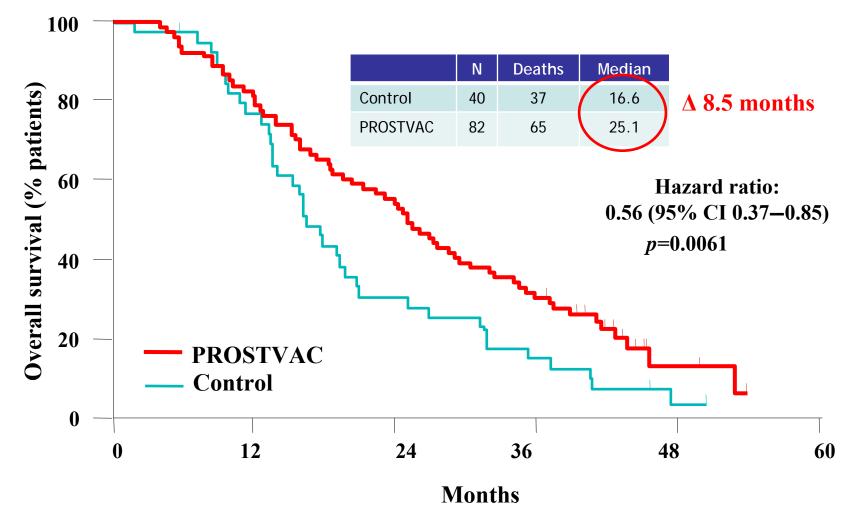
Prostate Cancer and Vaccine Therapy

- Long interval from primary diagnosis to metastatic disease
- Serum PSA (doubling time/velocity) as a surrogate for therapeutic benefit or disease recurrence
- Nomogram (Halabi) at metastatic disease

 can predict more indolent vs more aggressive disease


Therapies Shown to Improve Overall Survival in Metastatic Castration-Resistant Prostate Cancer

		Stop			Reduction	
Agent	Type of therapy	treatment 2º AE	Improvement in median OS	Hazard ratio	in death rate	Approved
Docetaxel	chemotherapy	11%	2.4 months	0.76	24%	2004
Cabazitaxel	chemotherapy	18%	2.4 months	0.70	30%	2010
Abiraterone	hormone	19%	3.9 months	0.66	34%	2011
Sipuleucel-T	vaccine	1.5%	4.1 months	0.78	22%	2010
Prostvac*	vaccine	~2%	8.5 months	0.56	44%	


* rV-, rF-PSA-TRICOM – Results of a Phase II randomized, placebo (vector)–controlled, 43-center trial.

PROSTVAC

PSA and a TRIad of COstimulatory Molecules

PROSTVAC Significantly Extended Overall Survival

Kantoff (Schlom, Gulley) et al. J Clin Oncol 2010

Randomized Multicenter Placebo-controlled Vaccine Therapy Trial in Castrate-resistant Metastatic Prostate Cancer Patients

Observations:

- A. Time to Progression: no difference in arms
- B. Median survival (at 4 years median follow-up) Placebo: 16.6 months Vaccine: 25.1 months (p=0.006)
- C. 44% reduction in death rate in vaccine arm

NCI Phase II Trial: MOS: 26.6 mo HPS: 17.4 mo

The Next Frontier: Vaccine Combination Therapies

The use of cancer vaccines in combination with conventional therapies

- Hormone therapy
- Radiotherapy of tumor
- Chemotherapy

The vaccine induction of a dynamic host immune response can be boosted by

– concomitant or subsequent therapies

The vaccine induction of a dynamic host immune response can be boosted by

– concomitant or subsequent therapies

(a) can alter the phenotype of tumor cells,rendering them more susceptible to T-cell killing

The vaccine induction of a dynamic host immune response can be boosted by

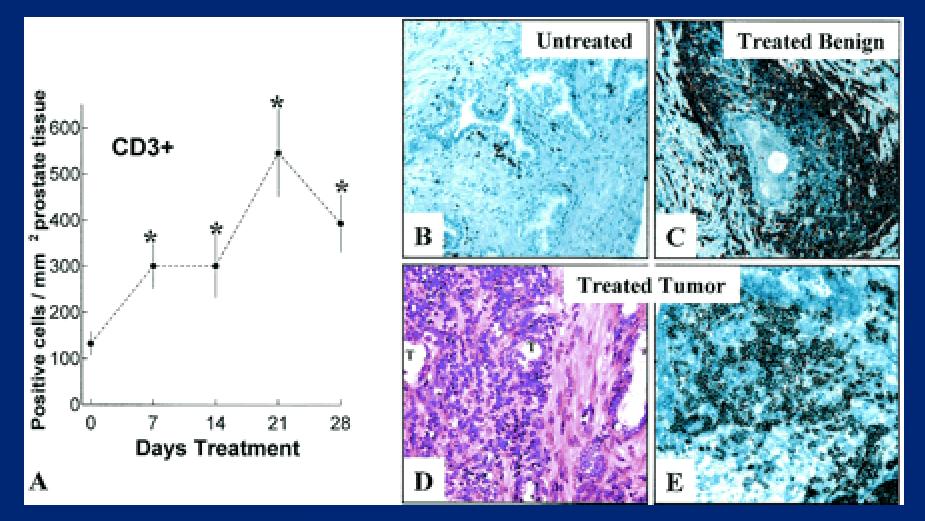
- concomitant or subsequent therapies
 - (a) can alter the phenotype of tumor cells, rendering them more susceptible to T-cell killing
 - (b) can lyse populations of tumor cells which, in turn, act as a booster for tumor-specific immune cells

The vaccine induction of a dynamic host immune response can be boosted by

- concomitant or subsequent therapies
 - (a) can alter the phenotype of tumor cells, rendering them more susceptible to T-cell killing
 - (b) can lyse populations of tumor cells which, in turn, act as a booster for tumor-specific immune cells
 - (c) can kill or inhibit regulatory T cells and thus boost the immune response

The Next Frontier: Vaccine Combination Therapies

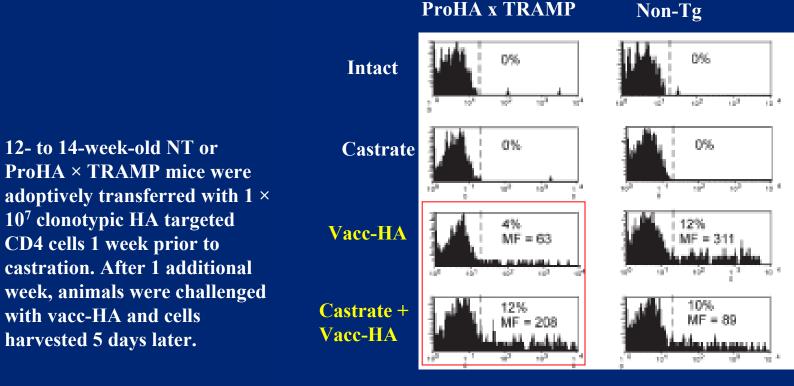
The use of cancer vaccines in combination with conventional therapies


- Hormone therapy
- Radiotherapy of tumor
- Chemotherapy

Dosing Regimens of Anti-androgen Therapy

Combination with Testosterone lowering therapy (CAB)

- Flutamide
 - 250 mg three times daily total 750 mg per day
- Bicalutamide
 - 50 mg daily
- Nilutamide
 - 300 mg once a day for 30 days followed thereafter by 150 mg per day


T cell infiltrate after ADT

Mercader M et al. Proc Natl Acad Sci U S A 2001 Dec 4;98(25):14565-70

Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen

Charles G. Drake,^{1,*} Amy D.H. Doody,² Marianne A. Mihalyo,² Ching-Tai Huang,^{1,3} Erin Kelleher,¹ Sowmya Ravi,¹ Edward L. Hipkiss,¹ Dallas B. Flies,¹ Eugene P. Kennedy,¹ Meixiao Long,² Patrick W. McGary,² Lee Coryell,² William G. Nelson,¹ Drew M. Pardoll,¹ and Adam J. Adler^{2,*}

IFNγ

Vaccine/Androgen Receptor Antagonist Therapy

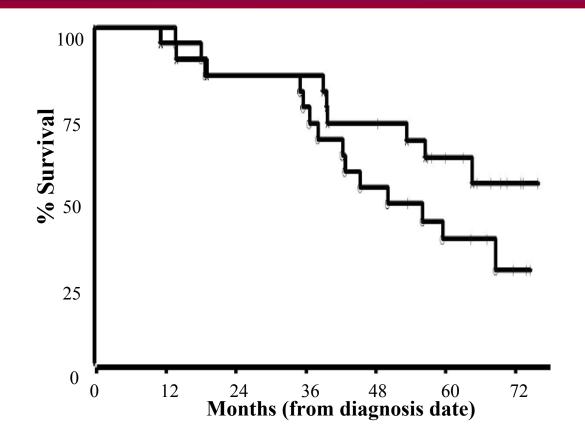
Patient Population: Androgen Independent Prostate Cancer with Rising PSA and No Radiographic Evidence of Disease (D = 0.5)

Arm A: Vaccine* (n=21)

rV-PSA + rV-B7-1 prime, rF-PSA boosts monthly IL-2 low dose x 5 days, recombinant GM-CSF x 4 days

Arm B: Nilutamide* (n=21) (Androgen Receptor Antagonist)

> *If patient progressed by PSA but still NED radiographically, they could add in the therapy of the other arm

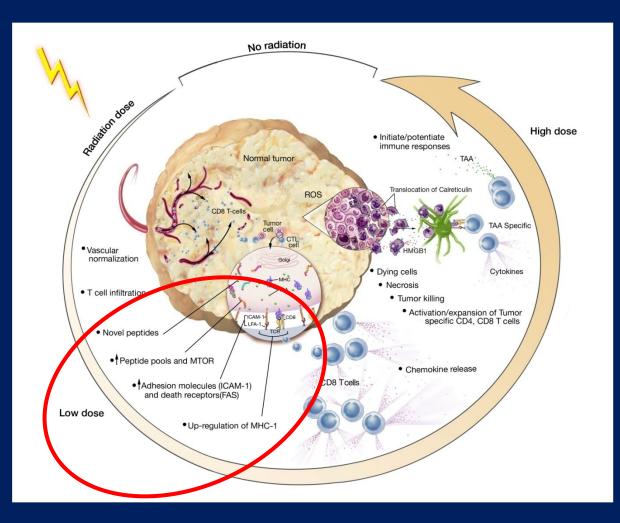

Time to Treatment Failure

		PSA	Median Time to
Regimen	n	↓ 50%	Treatment Failure
Vaccine	21	1	9.9 months
Nilutamide	21	10	7.6 months
Vaccine → Vaccine + Nilutamide	12	7	13.9 months (after cross-over)*
Nilutamide → Vaccine + Nilutamide	8	1	5.2 months (after cross-over)

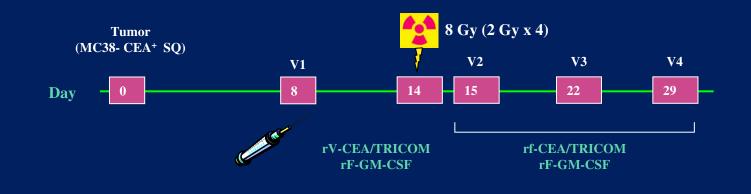
Treatment failure includes progressive disease (radiographic or PSA), or discontinuation due to toxicity.

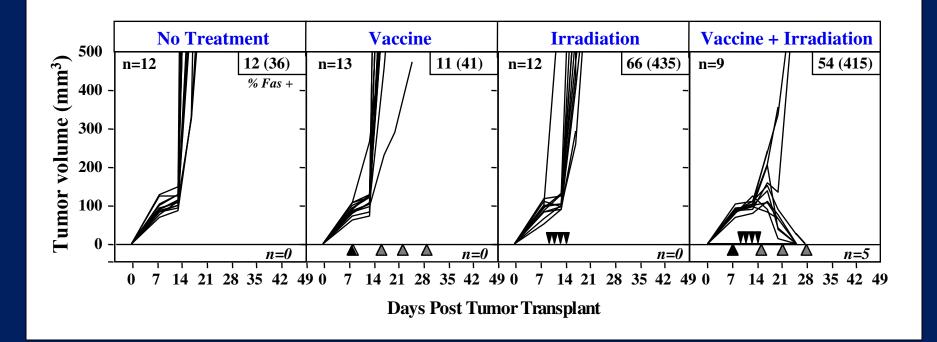
*Median time to cross-over was 12.0 months.

Overall Survival: Randomized Trial in Patients with Nonmetastatic HRPC Receiving Vaccine (rV-PSA/B7.1, rF-PSA) vs. Androgen Receptor Antagonist (Nilutamide) with Crossover at Progression


Five-Year Overall Survival: 38%: Nilutamide first 59%: Vaccine first

The Next Frontier: Vaccine Combination Therapies


The use of cancer vaccines in combination with conventional therapies


- Hormone therapy
- Radiotherapy of tumor
- Chemotherapy

Potential Multiple Effects of Local Irradiation of Tumors

Combination Therapy: Vaccine + External Beam Radiation

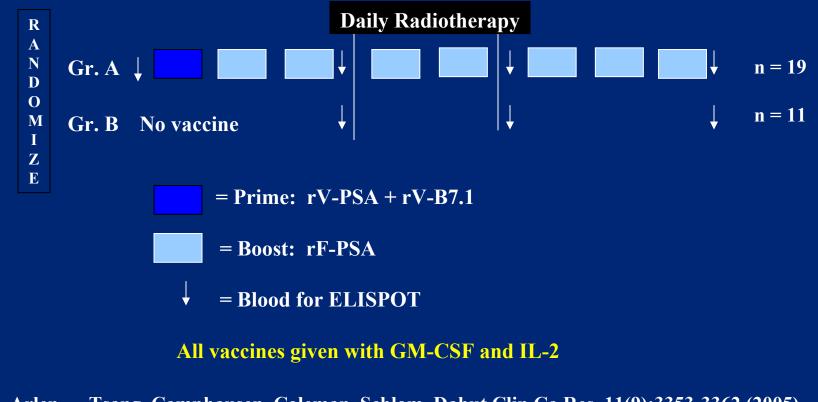
Chakraborty, Abrams...Schlom, Hodge. Cancer Res. 15:4328-37.

Antigen Cascade (Epitope spreading)

- Generation of T-cell responses to antigens not in vaccine

Tumor Therapy Model

 Antigen cascade T-cell responses greater in responders (tumor cure) vs. non-responders (tumor growth)


* Cascade antigen T-cell responses

 – can be <u>more potent</u> than those directed against antigen in vaccine
 – clinical implications

Kudo-Saito C, Schlom J, and Hodge JW. <u>Clin. Cancer Res.</u> 11:2416-2426, 2005 Kudo-Saito C, Schlom J, and Hodge JW. <u>Clin. Cancer Res.</u> 10:1090-1099, 2004 Kudo-Saito C, Schlom J, Camphausen K, Coleman CN, and Hodge JW. <u>Clin Cancer Res.</u> 11:4533-4544, 2005 Chakraborty M, Abrams SI, Coleman CN, Camphausen K, Schlom J, and Hodge JW. <u>Cancer Res.</u> 64:4328-4337, 2004

Trial : Radiotherapy ± Vaccine

Background: ~1/3 have PD after radiation therapy, often 2° to occult metastasis Perhaps this could be improved with a well tolerated systemic therapy (vaccine) The addition of vaccines to radiation → minimal risk of toxicity, potential synergy Hypothesis: Immune responses can be raised to TAA despite local RT

Gulley, Arlen, ... Tsang, Camphausen, Coleman, Schlom, Dahut Clin Ca Res, 11(9):3353-3362 (2005)

Immune response

- <u>13 of 17</u> evaluable patients in the vaccine arm had increases of their PSA-specific T-cells of at least <u>3-fold</u> following vaccination as measured by ELISPOT assay
- <u>None of 8</u> evaluable patients tested on the radiation only arm had any measurable increase in their PSA-specific T-cells (p<0.0005)
- <u>Hypothesis:</u> Effective immune mediated killing \rightarrow induction of immune response to prostate cancer antigens not in the vaccine (prior to RT).
- 6/8 pts tested had ≥2-fold increase in immune response to PAP, PSMA, PSCA and / or MUC-1
- Cells isolated from a pt who had both MUC-1 and PSA responses could specifically lyse PSA or MUC-1 containing tumors

Gulley, Arlen, ... Tsang, Camphausen, Coleman, Schlom, Dahut Clin Ca Res, 11(9):3353-3362 (2005)

Antigen Cascade

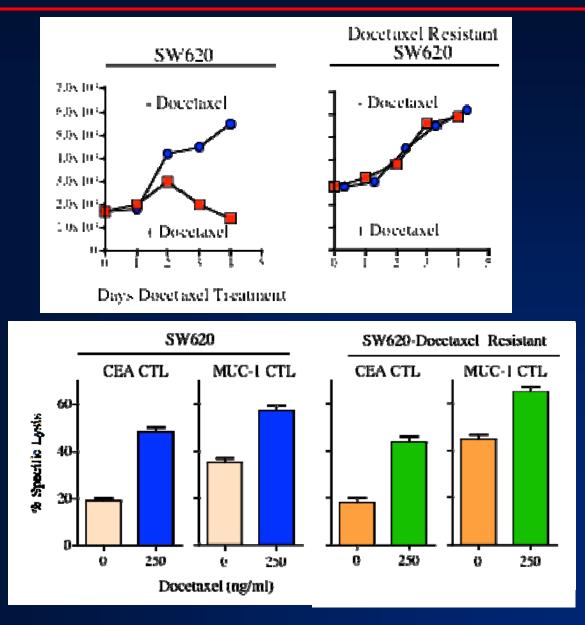
<u>Patient</u>	<u>Sample</u>	<u>PSA3</u>	<u>PSMA</u>	<u>PAP</u>	<u>PSCA</u>	<u>MUC-1</u>	
Pt 3	pre vac	-	-	-	-	-	
	post 3	+	-	+	+	+	
Pt 6	pre vac	-	-	-	-	-	
	post 3	+	+	-	-	+	
Pt 7	pre vac	-	-	-	-	-	
	post 3	+	-	+	-	-	
Pt 8	pre vac	-	-	-	ND	-	~ .
	post 3	+	+	-	ND	+	<u>Controls:</u> Flu
Pt 11	pre vac	-	-	-	-	-	HIV
	post 3	+	-	-	-	+	No peptio
Pt 12	pre vac	-	-	-	-	-	
	post 3	+	-	-	-	+	

The Next Frontier: Vaccine Combination Therapies

The use of cancer vaccines in combination with conventional therapies

- Hormone therapy
- Radiotherapy of tumor
- Chemotherapy

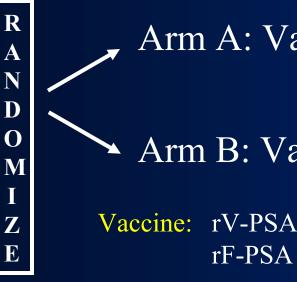
Mode of Action of Vaccine Combination Therapies


 Exploitation of the phenomenon of homeostatic proliferation of T cells post-chemotherapy

 certain effector immune cell subsets can be expanded more rapidly vs. regulatory cells

Evidence of non-coordinate lytic susceptibility of tumor cells

— tumor cells have shown differential susceptibilities to killing by chemotherapy/radiation vs. T cells

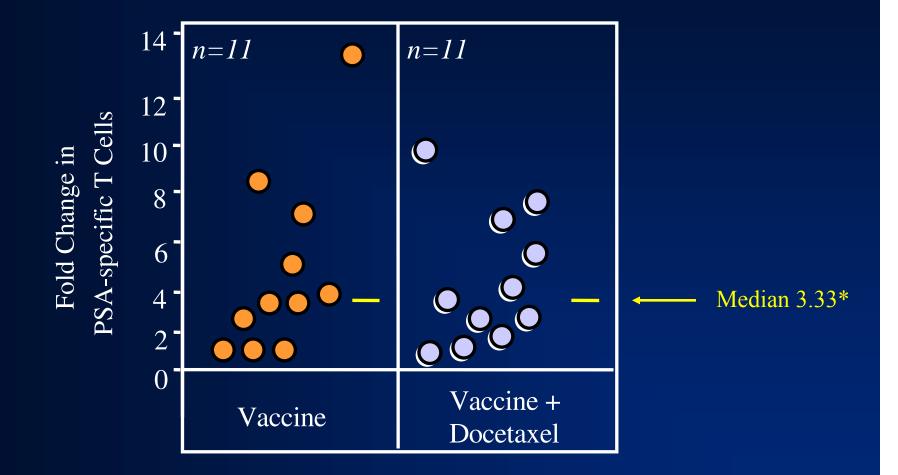

Human Carcinoma Cells Resistant to Chemotherapy Are Sensitive to CTL Killing After Treatment

Vaccine/Docetaxel Combination Therapy

Patient Population: Metastatic Androgen Independent Prostate Cancer (AIPC) <u>Primary endpoint</u>: Fold change in PSA specific T-cell precursors post-vaccine <u>Secondary endpoints</u>: Change in PSA velocity after 3 months, median time to

disease progression

Arm A: Vaccine + Docetaxel (n=14)


Arm B: Vaccine alone (n=14)*

Vaccine: rV-PSA + rV-B7.1 prime on day 1; rF-PSA boosts on days 15, 30, and 58

*At time of PD, vaccine could be stopped and docetaxel added.

Arlen, Gulley...Tsang...Steinberg...Schlom, and Dahut. Clin. Cancer Res. 12:1260-1269, 2006

Fold Increase in PSA-specific T Cells post Vaccination for Patients Receiving Vaccine vs. Vaccine plus Docetaxel (plus Steroid)

*p = 0.92 using Wilcoxon Sum Rank Test

Vaccine/Docetaxel Combination Therapy

Time to Progression

Regimen	n	>50% PSA decline	Median time to progression
Vaccine alone	14	0/14 (0%)	1.8 months
Vaccine +	14	3/14	3.2 months
docetaxel		(21.4%)	
Docetaxel post-	11	5/11	6.1 months
progression on		(45.5%)	
vaccine			
Docetaxel alone*	25	9/24	3.7 months
		(37.5%)	

*Historical control with same dose and schedule of docetaxel in similar patient population at same institution (Dahut et al., <u>J. Clin. Oncol.</u> 2004)

Chemotherapy vs. Vaccine Followed by Chemotherapy (ECOG Multicenter Trial)

Patient Population: Metastatic CRPC (Halabi Predicted Survival ≥ 18 months)

Arm A: PSA-TRICOM vaccine \rightarrow Docetaxel + Prednisone (n=90)

Arm B: Docetaxel + Prednisone (n=45)

Phase II (n=135) Primary endpoint: OS

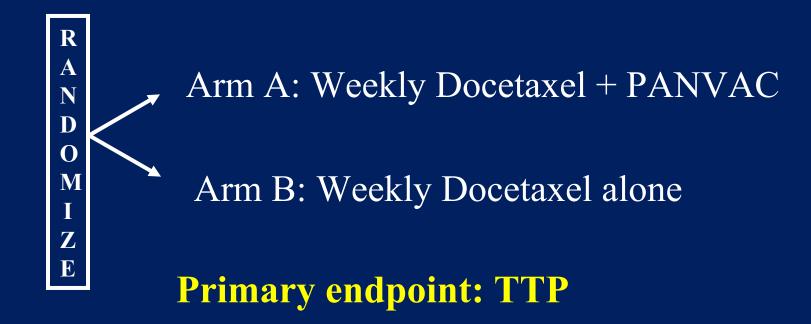
Protocol Chair: Doug McNeel Co-Chair: Gulley

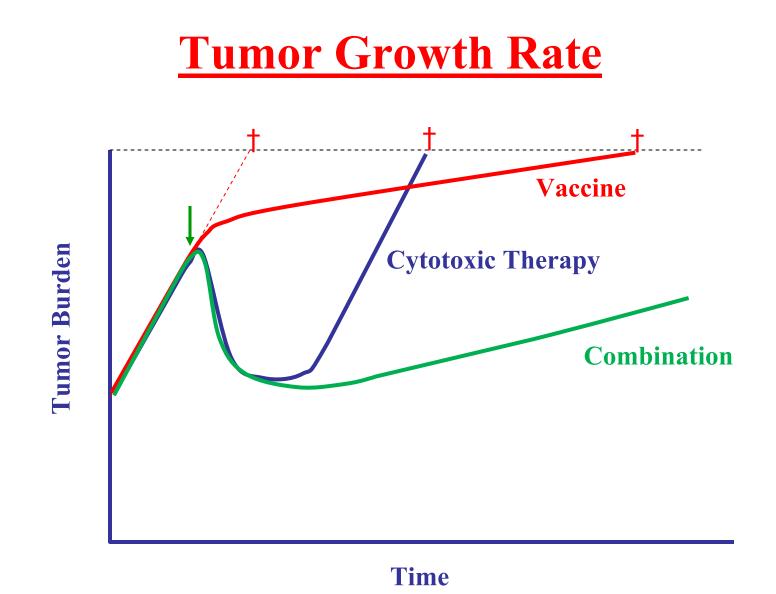
R

A

Ν

D


0


Ν

Z

Docetaxel +/- PANVAC

Patient Population: Metastatic Breast Cancer (Docetaxel Naïve) n=48

Stein W, Gulley JL, et al. Clin Ca Res, 2011

Unique Properties of Therapeutic Cancer Vaccines

Minimal toxicity

- Effect on the host immune system

 indirect effect on the tumor
 anti-tumor effects may be delayed
- Overall survival vs RECIST or time to progression as the appropriate primary endpoint
- Induction of host immunity is a <u>dynamic</u> process that can persist post-vaccination
- Potential for an enhanced effect on concomitant or subsequent therapies

Translational Research Programmatic Effort

PRECLINICAL STUDIES:

Laboratory of Tumor Immunology and Biology (LTIB) **James Hodge Claudia** Palena **Al Tsang Jack Greiner Jianping Huang Ingrid Fernando Benedetto Farsaci** Sofia Gameiro

Laboratory of Molecular Biology Ira Pastan

Vaccine Branch Jav Berzofsky

CLINICAL STUDIES:

LTIB/Medical Oncology Branch Ravi Madan **James Gulley Mary Pazdur Medical Oncology Branch Tito Fojo** William Dahut William Figg **Marijo Bilusic Chris Heery Radiation Oncology** Kevin Camphausen **Deborah Citrin Urologic Oncology** Marston Linehan **Peter Pinto Gennady Bratslavsky Biostatistics and Data Management Section Seth Steinberg NIH Nuclear Medicine** C.H. Paik **NIH Interventional Radiology Brad Wood**

Translational Research Programmatic Effort

<u>CLINICAL STUDIES — EXTRAMURAL</u>:

Georgetown – John Marshall Dana Farber Cancer Center – Donald Kufe, Paul Eder, Philip Kantoff Columbia – Howard Kaufman Cancer Institute of New Jersey – Edward Lattime, Robert DiPaola Ohio State – William Carson Duke – H. Kim Lyerly, Michael A. Morse

Eastern Cooperative Oncology Group (ECOG) – Robert DiPaola

CANCER THERAPY EVALUATION PROGRAM (CTEP):

Howard Streicher Jan Casadei

PRIVATE SECTOR:

GlobeImmune – David Apelian BN ImmunoTherapeutics – Wayne Godfrey, Reiner Laus, Alain Delcayre Merck/EMD Serono – Helen Sabzevari , Jens-Oliver Funk

<u>NCI Technology Transfer Center</u>: Kevin Brand, Bob Wagner, Karen Maurey <u>NIH Office of Technology Transfer</u>: Sabarni Chatterjee, Mojdeh Bahar