Immunotransplant for Mantle Cell Lymphoma: A phase I/II study demonstrating amplification of tumor-reactive T cells

Joshua Brody MD
Division of Oncology
Stanford University Medical Center
Presenter Disclosure Information

Joshua Brody M.D.

The following relationships exist related to this presentation:

<No Relationships to Disclose>
in situ vaccine
(low grade lymphoma)

autologous transplant
(mantle cell lymphoma)
CpG-based vaccine for *low-grade* lymphoma

Brody JD et al., *J Clin Oncol.* 2010 Oct 1;28(28).
CpG-based vaccine induces anti-tumor T cells

Brody JD et al., J Clin Oncol. 2010 Oct 1;28(28).
T-cell transfer into lymphodepleted recipients induces preferential $T_{\text{effector}} > T_{\text{reg}}$ proliferation.
Immunotransplant amplifies anti-tumor T cells induced by CpG-based vaccines

CpG in situ vaccine
- CpG
- NHL vaccinated donor
- T cells
- Lymphodepleted recipient
- CD44

CpG ex vivo vaccine
- CpG-NHL
- Transplant

Brody JD, et al., *Blood*. 2009 Jan 1;113(1).
Immunotransplant for MCL: schema & endpoints

Primary endpoint: immune response
- IFNγ
- TNF
- IL2
- perforin
- granzyme

MCL

CpG

Vaccine

Vaccine-primed T cells

Autologous transplant

Immunotransplant

Induction chemotherapy

Biopsy

CD137

Tumor-reactive T cell
Immunotransplant for MCL: cohort

<table>
<thead>
<tr>
<th>patient</th>
<th>age</th>
<th>gender</th>
<th>M-IPI</th>
<th>induction</th>
<th>induction complete</th>
<th>vaccine date</th>
<th>transplant date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60</td>
<td>M</td>
<td>high</td>
<td>R-hCVAD</td>
<td>Aug-09</td>
<td>Nov-09</td>
<td>Dec-09</td>
</tr>
<tr>
<td>2</td>
<td>60</td>
<td>M</td>
<td>intermed</td>
<td>R-CHOP</td>
<td>Aug-09</td>
<td>Dec-09</td>
<td>Jan-10</td>
</tr>
<tr>
<td>3</td>
<td>47</td>
<td>M</td>
<td>int-high</td>
<td>mR-hCVAD</td>
<td>Oct-09</td>
<td>Jan-10</td>
<td>Mar-10</td>
</tr>
<tr>
<td>4</td>
<td>69</td>
<td>M</td>
<td>high</td>
<td>R-CHOP</td>
<td>Nov-09</td>
<td>Feb-10</td>
<td>Apr-10</td>
</tr>
<tr>
<td>5</td>
<td>63</td>
<td>F</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>Nov-09</td>
<td>Mar-10</td>
<td>Apr-10</td>
</tr>
<tr>
<td>6</td>
<td>54</td>
<td>F</td>
<td>low-int</td>
<td>R-hCVAD</td>
<td>Oct-09</td>
<td>Mar-10</td>
<td>May-10</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>M</td>
<td>intermed</td>
<td>R-CHOP</td>
<td>Jan-10</td>
<td>Apr-10</td>
<td>Jun-10</td>
</tr>
<tr>
<td>8</td>
<td>67</td>
<td>M</td>
<td>intermed</td>
<td>R-EPOCH</td>
<td>May-10</td>
<td>Aug-10</td>
<td>Sep-10</td>
</tr>
<tr>
<td>9</td>
<td>51</td>
<td>F</td>
<td>intermed</td>
<td>VmR-hCVAD</td>
<td>May-10</td>
<td>Aug-10</td>
<td>Oct-10</td>
</tr>
<tr>
<td>10</td>
<td>70</td>
<td>M</td>
<td>int-high</td>
<td>mR-hCVAD</td>
<td>Oct-09</td>
<td>Sep-10</td>
<td>Oct-10</td>
</tr>
<tr>
<td>11</td>
<td>55</td>
<td>F</td>
<td>high</td>
<td>R-CHOP</td>
<td>Oct-10</td>
<td>Jan-11</td>
<td>Feb-11</td>
</tr>
<tr>
<td>12</td>
<td>69</td>
<td>F</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>Oct-10</td>
<td>Jan-11</td>
<td>Feb-11</td>
</tr>
<tr>
<td>13</td>
<td>63</td>
<td>M</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>Nov-10</td>
<td>Jan-11</td>
<td>Mar-11</td>
</tr>
<tr>
<td>14</td>
<td>44</td>
<td>M</td>
<td>low-int</td>
<td>mR-hCVAD</td>
<td>Dec-10</td>
<td>Feb-11</td>
<td>Mar-11</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>M</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>May-11</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>62</td>
<td>M</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>70</td>
<td>F</td>
<td>high</td>
<td>mR-hCVAD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>60</td>
<td>M</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>19</td>
<td>67</td>
<td>M</td>
<td>intermed</td>
<td>RCHOP/DHAP</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>70</td>
<td>F</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>59</td>
<td>F</td>
<td>intermed</td>
<td>mR-hCVAD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>48</td>
<td>M</td>
<td>int-high</td>
<td>mR-hCVAD</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>61</td>
<td>M</td>
<td>intermed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>65</td>
<td>M</td>
<td>intermed</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
CpG-MCL vaccine: CpG differentially induces activation markers

media

CpG

CD80

CD86

isotype-P

CD40

HLA-ABC

HLA-DR

isotype-A

isotype-F

fold-change with CpG

CD25 CD40 CD54 CD69 CD70 CD80 HLA-ABC HLA-DR %CD3
Immunotransplant for MCL: immune response
Induction of tumor-reactive T cells occurs only after immunotransplant

CD8 T cells

- **Pre-vaccine**
 - CD45RO: 6.9%
 - granzyme B: 1.8%
 - perforin: 1.8%

- **Post-vaccine**
 - CD45RO: 9.6%
 - granzyme B: 2.7%
 - perforin: 2.7%

- **Post immunotransplant**
 - CD45RO: 25.6%
 - granzyme B: 10.6%
 - perforin: 10.6%
Immunotransplant for MCL: immune response

Induction of tumor-reactive T cells occurs only after immunotransplant.

Graph showing the percentage of tumor-reactive T cells (vs baseline) post-vaccine for different patients and cell types.
Immunotransplant for MCL: immune response
Induction of tumor-reactive T cells occurs only after immunotransplant

% tumor-reactive T cells (vs baseline)

CD4 cells CD8 cells

post-immunotransplant

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

patient #

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0

CD137 IFNg TNF α/β IL-2 CD137 IFNg TNF α/β IL-2 perforin granzyme B
Immunotransplant for MCL: preliminary results

A proportion of tumor-

reactive

T cells are tumor-
specific

CD8 T cells

pre-vaccine

post-vaccine

post immuno-

transplant

2.8%

4.5%

31.4%

2.8%

3.8%

21.2%

T cell

MCL

B cells

tumor

grazyme

normal

B cells

tumor

B cells

ggranzyme

T cell

CD45RO

grazyme

B
Tracking T cells with TCRβV high throughput sequencing: few T cell clones are amplified by CpG-MCL vaccine
Tracking T cells with TCRβV high throughput sequencing: more T cell clones are amplified by immunotransplant.
Tracking T cells with TCRβV high throughput sequencing: some T cell clones are amplified by *in vitro* tumor co-culture
TCRβV high throughput sequencing

tumor-reactive T cells are amplified by immunotransplant

In vitro tumor co-culture (log fold-change)

p < 0.001

fold-change by immunotransplant

(all T cells)

100x vitro-amp

1000x vitro amp

(log-fold change)
Future Directions:

1) Assess whether immunotransplant improves the molecular remission rate compared to recent large studies of standard transplant for MCL:

2) Immunotransplant for:
 - aggressive NHL, PTCL, Myeloma

3) Non-ablative immunotransplant (e.g. fludarabine-based) for:
 - Hematologic: low-grade NHL, elderly MCL
 - Solid tumor: prostate CA
 melanoma
Thanks:

Lympoma Team:
Ranjana Advani
Holbrook Kohrt

Transplant Team:
Robert Negrin
Kevin Sheehan
BMT Lab

Immune Studies
Debra Czerwinski
Etelka Gabriel

Biostatistics
Phil Lavori

Funding:
Lymphoma Research Foundation
NCI K99/R00 ‘Pathway’ Award

Mentorship:
Ronald Levy
Shoshana Levy

High Throughput Sequencing
Malek Faham
Victoria Carlton
(Sequenta Inc.)

PF-3512676
Pfizer Inc.

All of the patients on:
NCT00185965
NCT00880581
NCT00490529
extra
T$_{reg}$-inducing tumors: inverse correlation with outcome

gated on CD4 T cells

<table>
<thead>
<tr>
<th>Pt #</th>
<th>Media</th>
<th>FoxP3</th>
<th>T$_{reg}$ Inducers</th>
<th>T$_{reg}$ Non-Inducers</th>
</tr>
</thead>
<tbody>
<tr>
<td>#14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Progression Free Probability

- T$_{reg}$ Inducers: $p = 0.0058$
- T$_{reg}$ Non-Inducers